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Preface

These lecture notes grew out of an M�Sc��course on di�erential ge�
ometry which I gave at the University of Leeds ����� Their main
purpose is to introduce the beautiful theory of Riemannian Geometry
a still very active area of Mathematics� This is a subject with no lack of
interesting examples� They are indeed the key to a good understanding
of it and will therefore play a major role throughout this work� Of spe�
cial interest are the classical Lie groups allowing concrete calculations
of many of the abstract notions on the menu�

The study of Riemannian Geometry is rather meaningless without
some basic knowledge on Gaussian Geometry i�e� the di�erential ge�
ometry of curves and surfaces in Euclidean �space� For this we recom�
mend the excellent textbook
 M� P� do Carmo� Di�erential Geometry
of Curves and Surfaces� Prentice Hall �����	�

These lecture notes are written for students with a good under�
standing of linear algebra� real analysis of several variables� the clas�
sical theory of ODEs and some topology� The most important results
stated in the text are also proved there� Other smaller ones are left to
the reader as exercises� which follow at the end of each chapter� This
format is aimed at students willing to put hard work into the course�

It is my intention to extent this very incomplete �rst draft� which unfor�
tunately still contains typing errors� and include some of the di�erential
geometry of the Riemannian symmetric spaces�

For further reading we recommend the very interesting textbook
 M�
P� do Carmo� Riemannian Geometry� Birkh�auser �����	�

Lund University� May ����

Sigmundur Gudmundsson
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CHAPTER �

Introduction

On the ��th of June ���� Georg Friedrich Bernhard Riemann gave
his famous �Habilitationsvortrag� in the Colloquium of the Philosophi�
cal Faculty at G�ottingen� His talk with the title ��Uber die Hypothesen�
welche der Geometrie zu Grunde liegen� is often said to be the most
important in the history of di�erential geometry� Gauss� at the age of
��� was in the audience and is said to have been very impressed�

Riemann�s revolutionary ideas generalized the geometry of surfaces
which had been studied earlier by Gauss� Bolyai and Lobachevsky�
Later they lead to an exact de�nition of the modern concept of an
abstract n�dimensional Riemannian manifold�

�
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CHAPTER �

Di�erentiable Manifolds

The main purpose of this chapter is to introduce the concept of
a di�erentiable manifold� generalizing the idea of a di�erentiable sur�
face studied in most introductory courses on Di�erential Geometry�
Furthermore we study submanifolds and di�erentiable maps between
manifolds�

De�nition ���� Let M be a topological Hausdor� space with a
countable basis� M is called a topological manifold if there exists
an m � N and for every point p � M an open neighbourhood Up of
p� such that Up is homeomorphic to some open subset Vp of Rm � The
natural number m is called the dimension of M � To denote that the
dimension of M is m we write Mm�

For an open subset U of Rm and r � N we denote by Cr�U�Rn	 the
r�times continuously di�erentiable maps from U to R

n � By smooth

we mean C� � ��r��C
r and C� means real analytic�

De�nition ���� Let Mm be a topological manifold� U be an open
and connected subset of M and � 
 U � Rm be a continuous map
which is a homeomorphism onto its image ��U	� Then �U� �	 is called
a chart �or local coordinate	 on M � A collection

A � f�U�� ��	j � � Ig
of charts on M is called a Cr�atlas if

i� M � ��U��
ii� The corresponding transition maps

�� � ���
� j���U��U�� 
 ���U� � U�	 � R

m

are Cr for all �� � � I�

De�nition ���� Let A be a Cr�atlas on M � A chart �U� �	 on M
is said to be compatible with A if A�f�U� �	g is a Cr�atlas on M � A

Cr�atlas �A is said to be maximal if it contains all charts compatible
with it� A maximal atlas �A on M is also called a Cr�structure on M �
A Cr�manifold is a topological manifold M with a Cr�structure� A
manifold is said to be smooth if it is C� and real analytic if it is
C��

�
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Remark ���� Note that a Cr�atlas A on M determines a unique
Cr�structure �A containing A� �A consists of all charts compatible with
A�

Example ���� Let Rm be the real m�dimensional vector space with
the usual topology T induced by the distance function

d�x� y	 �
p

�x� � y�	� � � � � � �xm � ym	��

For the topological space �Rm � T 	 we have the trivial C��atlas

A � f�Rm � idRm	j idRm 
 x �� xg
inducing the standard C��structure �A on Rm �

Example ���� Let Sm denote the unit sphere in Rm�� i�e�

Sm � fx � R
m�� j x�� � � � � � x�m�� � �g

equipped with the subset topology TSm induced by T on Rm�� � Let
n be the north pole n � ��� �	 � R � R

m and s be the south pole
s � ���� �	 on Sm� respectively� Put Un � Sm � fng� Us � Sm � fsg
and de�ne �n 
 Un � R

m � �s 
 Us � R
m by

�n 
 �x�� � � � � xm��	 �� �

�� x�
�x�� � � � � xm��	�

�s 
 �x�� � � � � xm��	 �� �

� � x�
�x�� � � � � xm��	�

Then the transition maps �s � ���
n � �n � ���

s 
 Rm � f�g � R
m � f�g

are given by x �� x�jxj� so A � f�Un� �n	� �Us� �s	g is a C��atlas on

Sm� The C��manifold �Sm� �A	 is called the m�dimensional standard
sphere�

Example ��	� On the set Rm�� � f�g we de�ne the equivalence
relation 	 by

x 	 y if and only if there exists � � R
� such that �x � y�

Let � 
 R
m�� � f�g � �Rm�� � f�g	� 	 be the natural projection

� 
 x �� �x� onto the quotient space which we denote by RPm and
equip with the quotient topology induced by � and T on Rm�� � For
k � f�� � � � � m � �g put Uk � f�x� � RPm j xk 
� �g and de�ne �k 

Uk � R

m by

�k 
 �x� �� �
x�
xk
� � � � �

xk��

xk
�
xk��

xk
� � � � �

xm��

xk
	�
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If �x� 	 �y� then �x � y for some � � R� so xl�xk � yl�yk for all
l� This means that �k is well de�ned for all k� The transition maps
�k � ���

l j�l�Ul�Uk� 
 �l�Ul � Uk	 � R
m are given by

�
x�
xl
� � � � �

xl��

xl
�
xl��

xl
� � � � �

xm��

xl
	 �� �

x�
xk
� � � � �

xk��

xk
�
xk��

xk
� � � � �

xm��

xk
	

so A � f�Uk� �k	j k � �� � � � � m � �g is a C��atlas on RPm � The mani�

fold �RPm � �A	 is called the m�dimensional real projective space�

Example ��
� Put �C � C � f�g� C � � C � f�g� U� � C and

U� � �C � f�g� Then de�ne the charts �� 
 U� � C � �� 
 U� � C

by �� 
 z �� z and �� 
 w �� ��w� respectively� Then the transition
maps �� � ���

� � �� � ���
� 
 C � � C � are given by z �� ��z so A �

f�U�� ��	� �U�� ��	g is a C��atlas on �C � The C��manifold ��C � �A	 is
called the Riemann sphere�

In what follows we shall by Rm � Sm� RPm or �C always mean the
standard manifolds above�

We now de�ne the concept of a submanifold �M of �Mm� �A	� Sub�
manifolds are very important objects which will be given considerable
attention as we go along� The additional structures that we will intro�
duce on �Mm� �A	 give the corresponding induced structures on �M in a
natural manner� We shall often be interested in how they are related�

De�nition ���� Let �Mm� �A	 be a Cr�manifold and �M be a subset
of M equipped with the subset topology of M � The set �M is said to
be an n�dimensional submanifold of M if for each p � �M there exists
a chart �Up� �p	 � �A such that

i� p � Up

ii� �p 
 Up � R
n � R

m�n satis�es

�p�Up � �M	 � �p�Up	 � �Rn � f�g	�
The positive natural number �m� n	 is called the codimension of �M
in Mm�

Proposition ����� Let �Mm� �A	 be a Cr�manifold and �M be an

n�dimensional submanifold of �Mm� �A	� For every point p � �M let

�Up� �p	 � �A be a chart on M such that p � Up and the map �p 
 Up �
Rn � Rm�n satis�es

�p�Up � �M	 � �p�Up	 � �Rn � f�g	�
Further let � 
 Rn �Rm�n � Rn be the natural projection onto the �rst
factor� Then

B � f�Up � �M�� � �pjUp� �M	j p � �Mg
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is a Cr�atlas for �M � In particular � �M� �B	 is an n�dimensional Cr�
manifold�

Proof� See Exercise ����

We shall now see how the well�known Inverse Function Theorem for
�nite dimensional real vector spaces can be used to construct di�eren�
tiable manifolds as submanifolds of Rm �

Fact ���� �The Inverse Function Theorem	� Let U be an open sub�
set of Rm and F 
 U � R

m be a Cr�map� If p � U and the derivative
DFp 
 Rm � Rm of F at p is invertible� then there exist open neighbour�

hoods V around p and W around F �p	 such that �F � F jV 
 V �W is

bijective and the inverse � �F 	�� 
 W � V is a Cr�map� The derivative

D� �F��	F �p� of �F�� at F �p	 is given by

D� �F��	F �p� � �DFp	
���

De�nition ����� Let U be an open subset of Rm and F 
 U � R
n

be a Cr�map� A point p � U is called a critical point for F if
DFp 
 Rm � R

n is not of full rank� and a regular point if it is not
critical� A point q � F �U	 is called a regular value of F if every point
p � F���fqg	 is a regular point for F and a critical value otherwise�

Theorem ���� �The Implicit Function Theorem	� Let m 	 n and
F 
 U � R

n be a Cr�map from an open subset U of Rm � If q �
F �U	 is a regular value of F then F���fqg	 is an �m�n	�dimensional
submanifold of Rm �

Proof� Let p be an element of F���fqg	 and Kp be the kernel
of the derivative DFp i�e� the �m � n	�dimensional subspace of Rm

given by Kp � fv � Rm j DFp � v � �g� Let �p 
 Rm � Rm�n be
a linear map such that �pjKp 
 Kp � R

m�n is bijective and de�ne
Gp 
 U � Rn � Rm�n by Gp 
 x �� �F �x	� �p�x		�

The derivative �DGp	p 
 Rm � Rm of Gp is� with respect to the
decomposition Rm � K�

p Kp� given by

DGp �

�
DFp

��� �p	

�
so it is bijective� It now follows from the inverse function theorem that
there exist open neighbourhoods Vp around p and Wp around Gp�p	

such that �Gp � GpjVp 
 Vp � Wp is bijective� The inverse �G��
p 
 Wp �

Vp is Cr and D� �G��
p 	Gp�p� � �DGp	

��
p so that D� �G��

p 	y is bijective for

all y � Wp� Now put �Up � F���fqg	 � Vp then

�Up � �G��
p ��fqg � R

m�n	 �Wp	
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so if � 
 Rn � Rm�n � Rm�n is the natural projection onto the second
factor� then the map

��p � � �Gp 
 �Up � �fqg � R
m�n	 �Wp � R

m�n

is a local chart on the open neighbourhood �Up of p� The point q � F �U	
is a regular value so the set

B � f� �Up� ��p	j p � F���fqg	g
is a Cr�atlas for F���fqg	�

Example ����� Let F 
 Rm�� � R be the C��map given by

F 
 �x�� ���� xm��	 �� �

�

m��X
i��

x�i �

The derivative DFx of F at x is given by DFx � �x�� ���� xm��� so
�DFx	 � �DFx	t � jxj� � R� This means that ��� � R is a regular value
of F so the �bre

Sm � fx � R
m�� j jxj� � �g � F���f���g	

of F is an m�dimensional submanifold of Rm�� � It is called the m�
dimensional sphere�

Example ����� Let F 
 Rm���Rm�� � R� be the C��map de�ned
by F 
 �p� v	 �� ��jpj� � �	��� hp� vi	� The derivative DF�p�v� of F at
�p� v	 is given by

DF�p�v� �

�
p �
v p

�
�

Hence det�DF � �DF 	t� � jpj��jpj� � jvj�	 � �� � jvj�	 	 � on F���f�g	�
This implies that

F���f�g	 � f�p� v	 � R
m�� � R

m�� j jpj� � � and hp� vi � �g
which we denote by TSm is a �m�dimensional submanifold of R�m�� �
We shall see later that TSm is what is called the tangent bundle of the
m�dimensional sphere�

We are now interested in di�erentiable maps between two di�eren�
tiable manifolds i�e� those which respect the di�erentiable structures
of the manifolds involved�

De�nition ����� Let �Mm� �A	 and �Nn� �B	 be two Cr�manifolds�
A map 
 
 Mm � Nn is said to be a Crmap if for all charts �U� ��	 �
�A and �V� ��	 � �B the maps

�� � 
 � ���
� j���U�����V �� 
 ���U � 
���V 		 � R

n
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are of class Cr� A Cr�map f 
 �Mm� �A	 � R is called a Cr�function
on M �

Proposition ���	� Let 
� 
 �M� �A	 � � �N� �C	 and 
� 
 � �N� �C	 �
�N� �B	 be two Cr�maps� then the composition 
��
� 
 �M� �A	 � �N� �B	
is also a Cr�map�

Proof� See exercise ����

Example ���
� It is easily seen that the following maps are C�

i�e� real analytic� see Exercise ����

i� �� 
 S� � R	 � S	 � R
 � �� 
 �x� y� z	 �� �x� y� z� �	�
ii� �� 
 S	 � C � � S� � C � R� �� 
 �z�� z�	 �� ��z��z�� jz�j� � jz�j�	�

iii� �	 
 R� � S� � C � �	 
 t �� eit�
iv� �
 
 Sm � RPm � �
 
 x �� �x��
v� �� 
 Rm�� � f�g � RPm � �� 
 x �� �x��
vi� �� 
 Rm�� � f�g � Sm� �� 
 x �� x�jxj�
Example ����� Let Rm�m denote the set of all real m�m�matrices

and Sym�Rm	 be the subset of those which are symmetric i�e�

Sym�Rm	 � fA � R
m�m j A � Atg�

Then Sym�Rm	 can be identi�ed with R
n where n � m�m � �	���

De�ne F 
 Rm�m � Sym�Rm	 by F 
 A �� AAt� The di�erential DFA
of F at A � Rm�m is given by DFA�X	 � AX t � XAt � Sym�Rm	�
For A � O�m	 � F���feg	 � fA � Rm�m j AAt � eg and Y �
Sym�Rm	 we see that DFA�Y A	 � �Y so DFA is surjective for every
A � O�m	� Hence e is a regular value of F and following the implicit
function theorem O�m	 is an m�m��	���dimensional C��submanifold
of Rm�m �� R

m�
� The set O�m	 is the well known orthogonal group and

the usual matrix multiplication � is a group structure on it� It is easily
checked that the map � 
 O�m	�O�m	 � O�m	 with � 
 �x� y	 �� x�y��

is C��

De�nition ����� A Lie group is a C��manifold G with a group
structure � such that the map � 
 G�G� G with � 
 �x� y	 �� x � y��

is C��

Example ����� Let � denote the usual addition in R
m � Then the

pair �Rm ��	 is an abelian Lie group�

Example ����� Let � denote the usual multiplication of the real
numbers R� the complex numbers C or the quaternions H � Then �R� � �	�
�C � � �	� and �H � � �	 are Lie groups� The corresponding unit spheres S��
S� and S	 are compact Lie subgroups in the trivial way�
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Example ����� We now give a few examples of matrix Lie groups�
In all cases the operation � is the usual matrix multiplication�

i� GL�Rm	 � fA � Rm�m j detA 
� �g is called the real general
linear group�

ii� SL�Rm	 � fA � R
m�m j detA � �g is called the real special

linear group�
iii� O�m	 � fA � Rm�m jAt � A � eg is called the orthogonal group�
iv� SO�m	 � fA � O�m	j detA � �g is called the special orthogo�

nal group�
v� GL�C m	 � fA � C m�m j detA 
� �g is called the complex general

linear group�
vi� SL�C m	 � fA � C m�m j detA � �g is called the complex special

linear group�
vii� U�m	 � fA � C

m�m j �At �A � eg is called the unitary group� and
viii� SU�m	 � fA � U�m	j detA � �g is called the special unitary

group�

De�nition ����� Two Cr�manifolds �M� �A	 and �N� �B	 are said

to be di�eomorphic if there exists a bijective Cr�map 
 
 �M� �A	 �
�N� �B	� such that its inverse 
�� 
 �N� �B	 � �M� �A	 also is Cr� The

map 
 is called a di�eomorphism between �M� �A	 and �N� �B	�

De�nition ����� Let �A and �B be two Cr�structures on the same
topological manifoldM � �A and �B are said to be di�erent if the identity
map idM 
 �M� �A	 � �M� �B	 is not a di�eomorphism�

Deep Result ����� Let �Mm� �A	� �Nn� �B	 be Cr�manifolds of the
same dimension i�e� m � n� If M and N are homeomorphic as topo�
logical spaces and m �  then �M� �A	 and �N� �B	 are di�eomorphic�

The following remarkable result was proved by J�Milnor in his fa�
mous paper
 Di�erentiable structures on spheres� Amer� J� Math� 
�
�����	� ��������

Deep Result ���	� The seven dimensional sphere S has exactly
�� di�erent di�erentiable structures�
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Exercises

Exercise ���� Let �M�� �A�	 and �M�� �A�	 be two smooth manifolds
and M � �M��M�� T 	 be the product space with the product topology�
Find a C��structure on M �

Exercise ���� Find a proof for Proposition �����

Exercise ���� Let S� be the ��dimensional sphere given by fz �
C j jzj� � �g� Use the maps �� 
 C � f��g � C with �� 
 z ��
�z � �	��z � �	 and �� 
 C � f�g � C with �� 
 z �� �� � z	���� z	 to
show that S� is a ��dimensional submanifold of C � R� �

Exercise ���� Show that the m�dimensional torus

Tm � fz � C
m j jz�j � ��� � jzmj � �g

is an analytic submanifold of C m �� R�m �

Exercise ���� Let F 
 Rm�� � R
m�� � R

� be the analytic map
given by

F 
 �x� y	 �� �

�
�jxj� � jyj�� jxj� � jyj�	

and R be the set of critical values of F � Determine whether the sets
F���f��� �	g	 and R are submanifolds of their ambient spaces�

Exercise ���� Let �G� �	 and �H� �	 be two Lie groups� Prove that
the product manifold G�H has a Lie group structure�

Exercise ��	� Find a proof of Proposition �����

Exercise ��
� Let �M� �A	 and �N� �B	 be two smooth manifolds
and �M � �N be submanifolds of M and N � respectively� Prove that if
� 
 M � N is a smooth map with �� �M	 contained in �N � then the

restriction �� � �j �M 
 �M � �N is smooth�

Exercise ���� De�ne two C��structures �A and �B on �R� T 	 by the
following atlases A � f�R� idR	j idR 
 x �� xg and B � f�R� 
	j 
 

x �� x	g�

i� Is the chart �R� 
	 compatible with A�

ii� Are �R� �A	 and �R� �B	 di�eomorphic�

Exercise ����� Prove that �S�� f�s� �ng	 and ��C � f�o� ��g	 as de�
�ned above are di�eomorphic�

Exercise ����� Prove the following di�eomorphies

S� �� SO��	� S	 �� SU��	�

SO�n	�O��	 �� O�n	� SU�n	�U��	 �� U�n	�



CHAPTER �

The Tangent Space

In this chapter we develope the idea of a tangent space from the
theory of surfaces in R

	 to the more general situation of a di�erentiable
manifold Mm� We see a tangent vector X at a point p as a �rst order
linear di�erential operator on the set of locally de�ned functions on the
manifold or rather that of functions germs at p� We then prove that
the tangent space TpM i�e� the set of all tangent vectors at p is a vector
space isomorphic to Rm �

From now on we shall assume� when not stating otherwise� that our
manifolds and maps are smooth i�e� in the C��category� Let Mm be a
manifold� For a point p �M let ���p	 be the set of all smooth functions
de�ned on an open neighbourhood of p i�e�

���p	 � ff 
 Uf � Rj Uf is an open subset of M containing pg�
On ���p	 we de�ne the equivalence relation 	 by
 f 	 g if and only
if there exists an open neighbourhood V � Uf � Ug such that f jV �
gjV � By ��p	 we denote the set of equivalence classes ��p	 � ���p	� 	�
The elements �f � of ��p	 are called the function germs at p� By the
following operations � and � on ��p	 we make it into an R�algebra�

i� �f � � �g� � �f � g��
ii� � � �f � � �� � f ��

iii� �f � � �g� � �f � g�

for all f� g � ��p	 and � � R�

De�nition ���� A tangent vector Xp at p � M is a map Xp 

��p	 � R such that

i� Xp�� � f �  � g	 � � �Xp�f	 �  �Xp�g	�
ii� Xp�f � g	 � g�p	 �Xp�f	 � f�p	 �Xp�g	

for all ��  � R and f� g � ��p	� By TpM we denote the set of all
tangent vectors Xp at p �M � TpM is called the tangent space of M
at p�

The following operations � and � make the tangent space TpM into
a real vector space�

i� �Xp � Yp	�f	 � Xp�f	 � Yp�f	�

��



�� �� THE TANGENT SPACE

ii� �� �Xp	�f	 � � �Xp�f	

for all Xp� Yp � TpM � f � ��p	 and � � R�
For M � Rm we denote by �m the set of function germs at � � Rm

i�e� �m � ���	� For v � R
m and f � �m the directional derivative of

f at � in the direction of v is given by

�vf � lim
t��

f�tv	� f��	

t
�

It is well known that for v � �v�� � � � � vm	 we have �vf �
Pm

i�� vi
�f

�xi
��	

and that

i� �v�� � f �  � g	 � � � �vf �  � �vg�
ii� �v�f � g	 � g��	 � �vf � f��	 � �vg�
iii� ����v�	�w�f � � � �vf �  � �wf

for all ��  � R� v� w � Rm and f� g � �m

Corollary ���� If v � Rm then the directional derivative �v is an
element of the tangent space T�R

m �

Lemma ���� If f � �m then there exist functions 
k � �m such
that

f�x	 � f��	 �
mX
k��

xk � 
k�x	 and 
k��	 �
�f

�xk
��	�

Proof� It follows from the Fundamental Theorem of Calculus that

f�x	� f��	 �

Z �

�

�f

�t
�tx�� � � � � txm	dt

�
mX
k��

xk

Z �

�

�f

�xk
�tx�� � � � � txm	dt�

Put 
k�x	 �
R �
�
�f��xk�tx�� � � � � txm	dt and the statement immediately

follows�

Theorem ���� The map � 
 Rm � T�R
m given by v �� �v is a

vector space isomorphism�

Proof� That the map � is linear follows directly from

����v�	�w�f � � � �vf �  � �wf
for all ��  � R� v� w � R

m and f � �m�
Let v� w � Rm such that v 
� w� Choose an element u � Rm such

that hu� vi 
� hu� wi and de�ne f 
 Rm � R by f�x	 � hu� xi� Then
�vf � hu� vi 
� hu� wi � �wf so �v 
� �w� This proves that the map �
is injective�
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Let � be an arbitrary element of T�R
m � For k � �� � � � � m let �xk 


R
m � R be the map �x�� � � � � xm	 �� xk and put vk � ���xk	� For

the constant function � 
 �x�� � � � � xm	 �� � we have ���	 � ��� � �	 �
� ����	 � � ����	 � � ����	� so ���	 � �� By the linearity of � it follows
that ��c	 � � for all constants c � R� Let f � �m and following Lemma
� write

f�x	 � f��	 �
mX
k��

�xk�x	 � 
k�x	�

where 
k � �m with 
k��	 � �f��xk��	� Then by applying � we obtain
that

��f	 � ��f��	 �
mX
k��

�xk � 
k	

� ��f��		 �
mX
k��


k��	 � ���xk	 �
mX
k��

�xk��	 � ��
k	

�
mX
k��

vk
�f

�xk
��	

� �vf�

where v � �v�� � � � � vm	 � Rm � This implies that � � �v and proves
that the map � is surjective�

Corollary ���� Let fekjk � �� � � � � mg be a basis for Rm � Then the
set f�ek jk � �� � � � � mg is a basis for the tangent space T�R

m �

De�nition ���� Let � 
 M � N be a map between two manifolds�
For a point p �M we de�ne the map d�p 
 TpM � T��p�N by

�d�p	�Xp	�f	 � Xp�f � �	

for all Xp � TpM and f � ����p		� The map d�p is called the di�er
ential of � at p �M �

Proposition ��	� Let � 
 M � �M and 
 
 �M � N be maps
between manifolds� then

i� the map d�p 
 TpM � T��p� �M is linear�
ii� if idM is the identity map� then d�idM	p � idTpM �
iii� d�
 � �	p � d
��p� � d�p

for all p �M � The last equation is called the Chain Rule�
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Proof� The only point which is not trivial is the chain rule� If
Xp � TpM and f � ��
 � ��p		� then

�d
��p� � d�p�Xp		�f	 � �d�p�Xp		�f � 
	

� Xp�f � 
 � �	

� d�
 � �	p�Xp	�f	�

This proves the statement�

Corollary ��
� Let � 
 M � N be a di�eomorphism with inverse

 � ��� 
 N � M � Then the di�erential d�p 
 TpM � T��p�N at p is
bijective and �d�p	

�� � d
��p��

Proof� The statement follows directly from

d�p � d
��p� � d�� � 
	��p� � d�idN	��p� � idT��p�N �

d
��p� � d�p � d�
 � �	p � d�idM	p � idTpM �

As a direct consequence of Corollaries �� and �� we obtain the
following result which generalizes the case when M� is a surface in R	 �

Corollary ���� Let Mm be an m�dimensional manifold and p �
M � Then the tangent space TpM at p is an m�dimensional real vector
space�

Proof� Let �U� y	 be a chart on M with y�p	 � �� Then the linear
map dyp 
 TpM � T�R

m �� Rm is a vector space isomorphism�

Next we show that a local chart around a point p � M gives a
canonical basis for the tangent space TpM �

Proposition ����� Let Mm be a manifold and �U� y	 be a local
coordinate on M � Further let fekj k � �� � � � � mg be the canonical basis
for Rm � For p �M we de�ne �

�yk
jp � TpM by

�

�yk
jp 
 f �� �f

�yk
�p	 � �ek�f � y��	�y�p		�

Then f �
�yk
jp j k � �� �� � � � � mg is a basis for the tangent space TpM for

all p � U �

Proof� We are assuming as usual that the manifold M is smooth
so the inverse y�� of y is smooth with di�erential �dy��	y�p� 
 Ty�p�R

m �
TpM satisfying

�dy��	y�p���ek	�f	 � �ek�f � y��	�y�p		

� �
�

�yk
jp	�f	
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for all f � ��p	� This proves the statement�

We shall now give an alternative description of the tangent space
TpM � Let �C�p	 be the set of all locally de�ned C��curves passing
through the point p � M i�e�

�C�p	 � f� 
 ���� �	 �M j � is C� and ���	 � pg�
For an element � � �C�p	 we have the di�erential d�� 
 T�R � TpM �
Let e� �� �e� � R �� T�R be the positive unit tangent of T�R� On the

set �C�p	 we de�ne the equivalence relation 	 by

�� 	 �� if and only if �d��	��e�	 � �d��	��e�	�

This means that the two parametrized curves �� and �� are identi�ed
if they have the same tangent at the point p� By C�p	 we denote the

set of equivalence classes i�e� C�p	 � �C�p	� 	�
It is an easy exercise to show that the map � 
 C�p	 � TpM with

� 
 ��� �� �d�	��e�	 is bijective� This implies that TpM can be identi�ed
with C�p	 being the set of all possible tangents to curves going through
the point p� Hence a vector v � TpM can be thought of as a �rst order
di�erential operator acting on the functions de�ned locally around the
point p � M as follows
 Let f 
 U � R be a function de�ned on an
open subset U of M containing p� Furthermore let � 
 I � U be a
curve with ���	 � p and  ���	 � v� Then the action of v on f is given
by

v�f	 �
d

dt
�f � ��t		jt���

Note that this is independent of the choice of the curve � as long as
���	 � p and  ���	 � v�

This second interpretation of TpM shows that if m � n and Mm is
a submanifold of Rn � then TpM is simply the tangent space of M at p
in the classical sense i�e� the space of all tangents to curves at the point
p � M � We can now use this alternative description to determine the
tangent space TeO�m	 of the orthogonal group O�m	 at the neutral
element e�

Example ����� Let e denote the neutral element of the orthogonal
group O�m	 i�e� the identity matrix� Let A 
 ���� �	 � O�m	 be
a curve in O�m	 such that A��	 � e� Then A�s	 � A�s	t � e for all
s � ���� �	� Di�erentiation yields

fA	�s	 � A�s	t � A�s	 � A	�s	tgjs�� � �

or equivalently A	��	�A	��	t � �� This means that each tangent vector
of O�m	 at e is a skew�symmetric matrix�
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On the other hand� for an arbitrary real skew�symmetric matrix Z
de�ne � 
 R � R

m�m by � 
 s �� Exp�s � Z	� where Exp is the usual
exponential map for matrices de�ned in Exercise ��� Then

��s	 � ��s	t � Exp�s � Z	 � Exp�s � Z	t

� Exp�s � Z	 � Exp�s � Zt	

� Exp�s�Z � Zt		

� Exp��	

� e�

This shows that � is a curve on the orthogonal group� ���	 � e and
�	��	 � Z so Z is an element of TeO�m	� Hence

TeO�m	 � fX � R
m�m j X � X t � �g�

The dimension of TeO�m	 is therefore m�m� �	��� This con�rms our
calculations of the dimension of O�m	 in chapter � since we know that
dim�O�m		 � dim�TeO�m		�
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Exercises

Exercise ���� Let the exponential map Exp 
 C m�m � C
m�m be

de�ned by

Exp 
 A ��
�X
k��

Ak

k!
�

Prove that for all A�B � C m�m

i� det�Exp�A	� � etrace�A��
ii� if A �B � B � A then Exp�A � B	 � Exp�A	 � Exp�B	�

iii� Exp� �At	 � Exp�A	t�

Exercise ���� Use the results from Exercise �� to determine the
tangent space TeG at the neutral element e and the dimension of the
following Lie groups
 GL�Rm	� SL�Rm	� O�m	� SO�m	� GL�C m	�
SL�C m	� U�m	� SU�m	�

Exercise ���� Let p be an arbitrary point on the unit sphere S�n��

of C n�� �� R
�n�� � Determine the tangent space TpS

�n�� and show that
it contains an n�dimensional complex subspace of C n�� �
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CHAPTER �

The Tangent Bundle

In this chapter we construct for each di�erentiable manifold �M� �A	
its tangent bundle TM � Intuitively this is the object we get by glueing
at each point p � M the corresponding tangent space TpM � This way

we obtain a �m�dimensional topological manifold� The structure �A on

M induces a di�erentiable structure cA� on TM which makes �TM�cA�	
into a di�erentiable manifold� We then study vector �elds which can
be thought of as being maps from M into TM � These are fundamental
tools for the geometric study of manifolds�

De�nition ���� Let E and M be topological manifolds and � 

E �M be a continuous surjective map� The triple �E�M� �	 is called
an n�dimensional topological vector bundle over M if

i� for each p �M the �bre Ep � ����p	 is an n�dimensional vector
space�

ii� for each p � M there exists a bundle chart �����U	� 
	 con�
sisting of the pre�image ����U	 of an open neighbourhood U of
p and a homeomorphism 
 
 ����U	 � U � Rn such that for all
q � U the map 
q � 
jEq 
 Eq � fqg � R

n is a vector space
isomorphism�

De�nition ���� Let �E�M� �	 be an n�dimensional topological vec�
tor bundle over M � It is said to be trivial if there exists a global bundle
chart 
 
 E �M � Rn �

Example ���� Let M be a topological manifold and � 
 M�Rn �
M be the natural projection � 
 �x� v	 �� x� Then �M � Rn �M� �	 is a
trivial n�dimensional vector bundle�

De�nition ���� Let �E�M� �	 be a topological vector bundle� A
continuous map � 
 M � E is called a section of the bundle if � �
��p	 � p for each p �M �

De�nition ���� Let �E�M� �	 be an n�dimensional topological vec�
tor bundle over M � A collection

B � f�����U�	� 
�	j � � Ig
��
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of bundle charts is called a bundle atlas for �E�M� �	 if M � ��U��
For each pair ��� �	 there exist a function A��� 
 U� � U� � GL�Rn	
such that the corresponding continuous map


� � 
��
� j�U��U���Rn 
 �U� � U�	� R

n � �U� � U�	� R
n

is given by

�p� v	 �� �p� �A����p		�v		�

The elements of fA���j �� � � Ig are called the transition maps of
the bundle atlas B�

De�nition ���� Let E and M be smooth manifolds and � 
 E �
M be a smooth map such that �E�M� �	 is an n�dimensional topological
vector bundle� A bundle atlas B for �E�M� �	 is said to be smooth

if the corresponding transition maps are smooth� A smooth vector

bundle is a topological vector bundle together with a maximal smooth
bundle atlas� A smooth section of �E�M� �	 is called a vector �eld�
By C��E	 we denote the set of all vector �elds of �E�M� �	�

From now on we assume that all vector bundles are smooth�

De�nition ��	� Let M be a manifold and �E�M� �	 be a vector
bundle over M � By the following operations we make C��E	 into a
C��M�R	�module� In particular� C��E	 is a vector space over the
real numbers�

i� �v � w	p � vp � wp�
ii� �f � v	p � f�p	 � vp

for all v� w � C��E	 and f � C��M�R	�

De�nition ��
� Let M be a manifold and �E�M� �	 be an n�
dimensional vector bundle over M � A set F � fv�� � � � � vng of vector
�elds v�� � � � � vn 
 U � M � E is called a local frame for E on U if
for each p � U the set f�v�	p� � � � � �vn	pg is a basis for the vector space
Ep�

Example ���� For a manifold �M� �A	 we denote by TM the tan
gent bundle of M given by

TM � f�p� v	j p �M� v � TpMg
and de�ne the projection � 
 TM �M by � 
 �p� v	 �� p�

For a chart x 
 U � R
m in �A we de�ne x� 
 ����U	 � R

m �R
m by

x� 
 �p�
mX
k��

vk
�

�xk
jp	 �� �x�p	� �v�� � � � � vm		�
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Then the collection

f�x�	���W 	 � TM j �U� x	 � �A and W � x�U	 � R
m openg

is a basis for a topology TTM on TM and �����U	� x�	 is a chart on the
�m�dimensional topological manifold �TM� TTM	� If �U� x	 and �V� y	

are two charts in �A such that p � U � V � then the transition map

�y�	 � �x�	�� 
 x������U � V 		 � R
m � R

m

is given by

�a� b	 �� �y � x���a	�
mX
k��

�y�
�xk

�x���a		bk� � � � �
mX
k��

�ym
�xk

�x���a		bk	�

We are assuming that y � x�� is smooth so it follows that �y�	 � �x�	��

is also smooth� This means that

A� � f�����U	� x�	j �U� x	 � �Ag
is a C��atlas on TM so �TM�cA�	 has the structure of a smooth

manifold� It is trivial that the projection � 
 TM � M is smooth
and surjective�

For each point p � M the �bre ����p	 of � is the tangent space
TpM of M at p so it is an m�dimensional vector space� For a chart

x 
 U � Rm in �A we de�ne �x 
 ����U	 � U � Rm by

�x 
 �p�
mX
k��

vk
�

�xk
jp	 �� �p� �v�� � � � � vm		�

The restriction �xp � �xjTpM 
 TpM � fpg � Rm to TpM is given by

�xp 

mX
k��

vk
�

�xk
jp �� �v�� � � � � vm	�

hence a vector space isomorphism� This implies that the map �x 

����U	 � U � Rm is a bundle chart� It is not di"cult to see that

B � f�����U	� �x	j �U� x	 � �Ag
is a bundle atlas making �TM�M� �	 into an m�dimensional topological
vector bundle� It immediately follows from above that �TM�M� �	

together with the maximal bundle atlas �B de�ned by B is a smooth
vector bundle�

Example ����� Let S	 be the unit sphere in C
� on which we de�ne

the operation � by

�x� y	 � ��� �	 � �x�� �y�� y� � �x�	�
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It is easily checked that �S	� �	 is a Lie group with neutral element
e � ��� �	� Put v� � �i� �	� v� � ��� �	 and v	 � ��� i	 and for k � �� �� 
de�ne the curves �k 
 R � S	 by

�k 
 t �� cos t � ��� �	 � sin t � vk�
Then �k��	 � e and  �k��	 � vk for each k so v�� v� and v	 are elements of
the tangent space TeS

	� The tangent vectors v�� v� and v	 are linearily
independent so they span TeS

	� The left translations Lp 
 S	 � S	

with Lp 
 h �� p � h induce vector �elds X�� X�� X	 � C��TS		 by

�Xk	p � �dLp	e�vk	 �
d

dt
�Lp��k�t			jt���

It is left as an exercise for the reader to show that at a point p �
�x� y	 � S	 the values of Xk at p is given by

�X�	p � �x� y	 � �i� �	 � �ix� iy	�

�X�	p � �x� y	 � ��� �	 � ���y� �x	�

�X		p � �x� y	 � ��� i	 � ��i�y� i�x	�

Lemma ����� Let Mm be a smooth manifold and X 
 M � TM
be a continuous section on M � Then the following conditions are equiv�
alent

i� the section X is smooth�
ii� if �U� x	 is a chart on M then the functions a�� � � � � am 
 U � R

given by
mX
k��

ak
�

�xk
� XjU �

are smooth�
iii� if f 
 V � R de�ned on an open subset V of M is smooth� then

the function X�f	 
 V � R with X�f	�p	 � Xp�f	 is smooth�

Proof� i�� ii
 The functions ak � �m�k �x� �XjU 
 U � TM �
x�U	 � Rm � R are restrictions of compositions of smooth maps so
therefore smooth�

ii� � iii
 Let �U� x	 be a chart on M such that U is contained in
V � By assumption the map X�f jU	 �

Pm

i�� ai
�f

�xi
is smooth� This is

true for each such chart �U� x	 so the function X�f	 is smooth�
iii� � i
 Note that the smoothness of the section X is equivalent

to x� � XjU 
 U � R
�m being smooth for all charts �U� x	 on M � On

the other hand� this is equivalent to x�k � �k � x� �XjU 
 U � R being
smooth for all k � �� �� � � � � �m and all charts �U� x	 on M � It is trivial
that the coordinates x�k � xk for k � �� � � � � m are smooth� But x�m�k �
ak � X�xk	 for k � �� � � � � m hence also smooth by assumption�
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De�nition ����� Let M be a smooth manifold� For two vector
�elds X� Y � C��TM	 we de�ne the Lie bracket �X� Y �p of X and Y
at p � M by

�X� Y �p�f	 � Xp�Y �f		� Yp�X�f		 � R

where f � C��M�R	�

Lemma ����� Let M be a smooth manifold� X� Y � C��TM	 be
vector �elds on M � f� g � C��M�R	 and ��  � R� Then

i� �X� Y �p��f � g	 � ��X� Y �p�f	 � �X� Y �p�g	�
ii� �X� Y �p�f � g	 � f�p	�X� Y �p�g	 � g�p	�X� Y �p�f	�

Proof�

�X� Y �p��f � g	

� Xp�Y ��f � g		� Yp�X��f � g		

� �Xp�Y �f		 � Xp�Y �g		� �Yp�X�f		� Yp�X�g		

� ��X� Y �p�f	 � �X� Y �p�g	�

�X� Y �p�f � g	

� Xp�Y �f � g		� Yp�X�f � g		

� Xp�f � Y �g	 � g � Y �f		� Yp�f �X�g	 � g �X�f		

� Xp�f	Yp�g	 � f�p	Xp�Y �g		 � Xp�g	Yp�f	 � g�p	Xp�Y �f		

�Yp�f	Xp�g	� f�p	Yp�X�g		� Yp�g	Xp�f	� g�p	Yp�X�f		

� f�p	fXp�Y �g		� Yp�X�g		g� g�p	fXp�Y �f		� Yp�X�f		g
� f�p	�X� Y �p�g	 � g�p	�X� Y �p�f	�

Proposition ����� Let M be a manifold and X� Y � C��TM	�
Then

i� �X� Y �p is an element of TpM for all p �M �
ii� the section �X� Y � 
 p �� �X� Y �p is smooth�

Proof� The �rst statement is a direct consequence of Lemma ����
It implies that �X� Y � 
 M � TM is a section of TM � If f 
 M � R

is a smooth function� then �X� Y ��f	 � X�Y �f		�Y �X�f		 is smooth�
It then follows from Lemma ���� that the section �X� Y � is smooth�

Theorem ����� Let M be a smooth manifold� The vector space
C��TM	 of smooth vector �elds on M equipped with the Lie bracket
�� � 
 C��TM	�C��TM	 � C��TM	 is a Lie algebra over the real
numbers i�e� if X� Y� Z � C��TM	 and ��  � R then

i� ��X � Y� Z� � ��X�Z� � �Y� Z��
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ii� �X� Y � � ��Y�X��
iii� �X� �Y� Z�� � �Z� �X� Y �� � �Y� �Z�X�� � ��

Proof� See exercise ����

De�nition ����� Let M be a smooth manifold� Two vector �elds
X� Y � C��TM	 are said to commute if �X� Y � � ��

Lemma ���	� Let � 
 M � N be a smooth bijective map between
two manifolds� If X� Y � C��TM	 are vector �elds on M � then

i� d��X	 � C��TN	�
ii� the map d� 
 C��TM	 � C��TN	 is a Lie algebra homomor�

phism i�e� �d��X	� d��Y 	� � d���X� Y �	�

Proof� That d��X	 � C��TN	 follows directly from the fact that

d��X	�f	���p		 � X�f � �	�p	�

Let f 
 N � R be a smooth function� then

�d��X	� d��Y 	��f	 � d��X	�d��Y 	�f		� d��Y 	�d��X	�f		

� X�d��Y 	�f	 � �	� Y �d��X	�f	 � �	

� X�Y �f � �		� Y �X�f � �		

� �X� Y ��f � �	

� d���X� Y �	�f	�

This completes the proof�

De�nition ���
� Let G be a Lie group with neutral element e� For
x � G the left translation by x is the map Lx 
 G � G de�ned by
Lx 
 y �� xy� A vector �eld X � C��TG	 is said to be leftinvariant
if for all x� y � G

Xxy � �dLx	y�Xy	�

We denote the set of all left�invariant vector �elds on G by g�

Note that if X � g� then Xx � �dLx	e�Xe	� This implies that the
value Xx of X at x � G is completely determined by the value Xe of
X at e�

Proposition ����� Let G be a Lie group and g be the set of all
left�invariant vector �elds on G� Then

i� g is a Lie subalgebra of C��TG	 i�e� if X� Y � g then �X� Y � � g�
ii� the vector spaces g and TeG are isomorphic�
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Proof� If x� y � G and f a smooth function on G� then

��dLx	y�X� Y �y	�f	 � �dLx�X	� dLx�Y 	�y�f	

� dLx�X	y�dLx�Y 	�f		� dLx�Y 	y�dLx�X	�f		

� dLx�X	y�Y �f � Lx		� dLx�Y 	y�X�f � Lx		

� X�Y �f � Lx		�y	� Y �X�f � Lx		�y	

� �X� Y �xy�f	

for all X� Y � g� This proves that �X� Y � � g and thereby that the
vector space g is a Lie subalgebra of C��TG	�

To see that g is isomorphic to the tangent space at the neutral
element TeG note that the map � 
 TeG � g given by � 
 Z �� �Z� 

x �� �dLx	e�Z		 is a vector space isomorphism�

De�nition ����� Let G be a Lie group and de�ne a Lie bracket
�� � on TeG by �X� Y � � �X�� Y ��e� Then �TeG� �� �	 �� �g� �� �	 is called
the Lie algebra of G�

Proposition ����� Let GL�Rm	 be the general linear group of the
real m�dimensional vector space Rm � Then TeGL�Rm	 � Rm�m and
the Lie bracket �� � 
 TeGL�Rm	 � TeGL�Rm	 � TeGL�Rm	 de�ned
above is given by �A�B� � AB � BA�

Proof� See exercise ����

The Lie algebras of the matrix groups introduced in Example ���
are denoted by gl�Rm	� sl�Rm	� o�m	� so�m	� gl�C m	� sl�Rm	� u�m	 and
su�m	�

Theorem ����� Let G be a Lie group� Then the tangent bundle
TG is trivial�

Proof� Let fX�� � � � � Xmg be a basis for TeG� Then the map 
 

TG� G� R

m given by


 
 �p�
mX
k��

vk � �X�
k	p	 �� �p� �v�� � � � � vm		

is a global bundle chart so the tangent bundle TG is trivial�
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Exercises

Exercise ���� Let �Mm� �A	 be a smooth manifold and �U� x	� �V� y	

be two charts in �A such that U �V 
� �� Let f � y �x�� 
 x�U �V 	 �
Rm be the corresponding transition map� Show that the local frames
f �
�xi
j i � �� � � � � mg and f �

�yj
j j � �� � � � � mg for TM on U � V are

related by
�

�xi
�

mX
j��

��fj � x	

�xi
� �

�yj
�

Exercise ���� Let O�m	 be the orthogonal group�

i� Find a basis for the tangent space TeO�m	�
ii� construct a non�vanishing vector �eld Z � C��TO�m		�

iii� determine all smooth vector �elds on O��	�

The Hairy Ball Theorem� If m � N� then there does not exist a
non�vanishing vector �eld X � C��TS�m	�

Exercise ���� Let m � N
� � Use the Hairy Ball Theorem to prove

that the tangent bundle TS�m of S�m is not trivial� Construct a non�
vanishing vector �eld X � C��TS�m��	�

Exercise ���� Find a proof for Theorem �����

Exercise ���� Let f���xkj k � �� � � � � mg be the standard global
frame for TRm � Let X� Y � C��TRm	 be two vector �elds given by

X �
mX
k��

�k
�

�xk
and Y �

mX
k��

�k
�

�xk
�

where �k� �k � C��Rm �R	� Calculate the Lie brackets ����xk� ���xl�
and �X� Y ��

Exercise ���� Find a proof for Proposition �����



CHAPTER �

Immersions� Embeddings and Submersions

De�nition ���� A map � 
 Mm � Nn between two manifolds is
called

i� an immersion if for each p � M the di�erential d�p 
 TpM �
T��p�N is injective�

ii� an embedding if it is an immersion and a homeomorphism onto
its image ��M	�

iii� a submersion if for each p �M the di�erential d�p is surjective�

Example ���� Let S� be the unit circle in C � For each positive
natural number k de�ne �k 
 S� � C and 
k 
 S� � S� by

�k� 
k 
 z �� zk�

For a point p � S� let � 
 R � S� be the curve with � 
 t �� eitp� Then
���	 � p and  ���	 � ip� For the di�erentials of �k and 
k we have

�d
k	p�  ���		 � �d�k	p�  ���		 �
d

dt
��k���t		jt�� �

d

dt
�eiktpk	jt�� � ikpk�

The di�erentials �d
k	p 
 TpS
� �� R� � TpkS

� �� R are all bijective�
so the maps 
k are both immersions and submersions� The only one
that is an embedding is 
��

The di�erentials �d�k	p 
 TpS
� � TpkC �� R� are all injective and

not surjective� This means that the maps �k are all immersions� but
none of them is a submersion� The only one that is an embedding is
���

Example ���� For p � Sm let �p 
 Rm�� � Rm�� be the re#ection
about the line ftp � Rm�� j t � Rg spanned by p� Then de�ne the map
� 
 Sm � R�m�����m��� by

� 
 p �� ��p 
 q �� �hq� pip� q	�

Then the matrix describing the linear map �p is given by ��ppt � I	 �
R�m�����m��� � since �hq� pip� q � �php� qi � q � ��ppt � I	q

Proposition ���� The map � is an immersion and the image ��Sm	
is di�eomorphic to the m�dimensional real projective space RPm and
lies in Sym�Rm��	 �O�m � �	�

��
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Proof� Let p be an arbitrary point on Sm and �� � 
 I � Sm be
two curves meeting at p� that is ���	 � p � ���	� with a �  ���	 and

b �  ���	� For � � f�� �g we have

� � � 
 t �� �q �� �hq� ��t	i��t	� q	

so

�d�	p�  ���		 �
d

dt
�� � ��t		jt�� � �q �� �hq�  ���	i���	 � �hq� ���	i  ���		�

This means that

d�p�a	 � �q �� �hq� aip � �hq� pia	

d�p�b	 � �q �� �hq� bip � �hq� pib	�
If a 
� b then d�p�a	 
� d�p�b	 so the di�erential d�p is injective� This
proves that � is an immersion�

If two points p� q � Sm are linearily independent� then �p 
� �q
since their images are di�erent� On the other hand� if p � �q then
�p � �q� This means that the image ��Sm	 is di�eomorphic to the
quotient space Sm� 	 where 	 is the equivalence relation de�ned by
x 	 y if and only if x � �y� This proves that ��Sm	 �� RPm � It is
obvious that ��Sm	 lies on Sym�Rm��	 �O�m � �	�

Corollary ���� The map �� 
 RPm � Sym�Rm��	�O�m��	 given
by

�� 
 �p� �� ��ppt � I	

is an embedding�

The following result was proved by H� Whitney in his very famous
paper� Di�erentiable Manifolds� Ann� of Math� �	 ����	� ��������

Deep Result ���� For � � r � � let Mm be an m�dimensional
Cr�manifold� Then there exists a Cr�embedding � 
 M � R�m�� into
the ��m � �	�dimensional real vector space R�m�� �

De�nition ��	� Let � 
 Mm � Nn be a map between manifolds�
A point p � M is called a critical point if the di�erential d�p 

TpM � T��p�N is not of full rank� and a regular point if it is not
critical� A point q � ��M	 is called a regular value if every point on
the pre�image ����fqg	 is regular�

Theorem ��
 �The Implicit Function Theorem	� Let � 
 Mm �
Nn be a map between two manifolds� If q � ��M	 is a regular value�
then the pre�image ����fqg	 is an �m�n	�dimensional submanifold of
Mm� The tangent space Tp�

���fqg	 of ����fqg	 at p is the kernel of
the di�erential d�p i�e� Tp�

���fqg	 � Ker d�p�
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Proof� Let �Vq� 
q	 be a chart on N with q � Vq and 
q�q	 � ��
For a point p � ����fqg	 we choose a chart �Up� 
p	 on M such that
p � Up� 
p�p	 � � and ��Up	 � Vq� The di�erential of the map

�� � 
q � � � 
��
p j�p�Up� 
 
p�Up	 � R

n

at the point � is given by

d��� � �d
q	q � d�p � �d
��
p 	� 
 T�R

m � T�R
n �

The pairs �Up� 
p	 and �Vq� 
q	 are charts so the di�erentials �d
q	q and

�d
��
p 	� are bijective� This means that the di�erential d��� is surjective

since d�p is� It then follows from the implicit function theorem ���
that 
p��

���fqg	�Up	 is an �m�n	�dimensional submanifold of 
p�Up	�
Hence ����fqg	�Up is an �m�n	�dimensional submanifold of Up� This
is true for each point p � ����fqg	 so we have proved that ����fqg	 is
an �m� n	�dimensional submanifold of Mm�

Let � 
 ���� �	 � ����fqg	 be a curve� such that ���	 � p� Then

�d�	p�  ���		 �
d

dt
�� � ��t		jt�� �

dq

dt
jt�� � ��

This implies that Tp�
���fqg	 is contained in� and has the same dimen�

sion as the kernel of d�p� so Tp�
���fqg	 � Ker d�p�

De�nition ���� Let Mm be a smooth manifold and U be an open
subset of Rm � An immersion 
 
 U �M is called a local parametriza

tion of M �

Example ����� Let �U� �	 be a chart on Mm� Then the inverse
��� 
 ��U	 � U of � is a local parametrization of U �M �

Example ����� Let S	 and S� be the unit spheres in C � and C �
R �� R	 � repectively� Let � 
 S	 � S� be the map given by � 

�x� y	 �� ��x�y� jxj� � jyj�	� Then one easily shows that � and d�p 

TpS

	 � T��p�S
� are surjective for each p � S	� This implies that each

point q � S� is a regular value and the �bres of � are ��dimensional
submanifolds of S	� They are the great circles given by

����f��x�y� jxj� � jyj�	g	 � fei
�x� y	j � � Rg�
This means that S	 is the union of disjoint great circles

S	 �
�
q
S�

����fqg	�

It is also what is called a S��bundle over S��
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Exercises

Exercise ���� For each k � N� de�ne �k 
 C � C and 
k 
 C � �
C by �k� 
k 
 z �� zk� For which k � N� are �k� 
k immersions�
submersions or embeddings�

Exercise ���� Let S� and S	 be the unit spheres of R	 and C � �
respectively� The Hopfmap � 
 S	 � S� is de�ned by � 
 �x� y	 ��
��x�y� jxj� � jyj�	� Prove that � is a submersion�
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Riemannian Manifolds

Let M be a smooth manifold and as before we denote by C��TM	
the set of vector �elds on M � Let C�

� �TM	 � C��M�R	 be the ring
of all smooth functions de�ned on M � For k � N� let

C�
k �TM	 �

kO
l��

C��TM	�

be the k�fold tensor product of C��TM	� Then C�
k �TM	 is a C�

� �TM	
module in the trivial way� A tensor �eld B on M of type �r� s	 is
an r�linear map B 
 C�

r �TM	 � C�
s �TM	 over the ring C�

� �TM	 i�e�

B�X�� � � � � Xl��� f �Xl � g � Y�Xl��� � � � � Xr	

� f �B�X�� � � � � Xr	 � g �B�X�� � � � � Xl��� Y�Xl��� � � � � Xr	

for all X�� � � � � Xr� Y � C��TM	� f� g � C�
� �TM	 and l � �� � � � � r�

Proposition ���� Let B 
 C�
r �TM	 � C�

s �TM	 be a tensor �eld
of type �r� s	 and p � M � Let X�� � � � � Xr and Y�� � � � � Yr be smooth
vector �elds on M such that �Xk	p � �Yk	p for each k � �� � � � � r� Then

B�X�� � � � � Xr	�p	 � B�Y�� � � � � Yr	�p	�

Proof� It is su"cient to prove the statement for r � � since the
rest follows by induction� Put X � X� and Y � Y�� Let �U� x	 be
a local coordinate on M � Choose a function f � C�

� �TM	 such that
f�p	 � � and support�f	 is contained in U � Then de�ne v�� � � � � vm �
C��TM	 by

�vk	q �

�
f�q	 � �

�xk
jq if q � U

� if q �� U

Then there exist functions �k� �k � C�
� �TM	 such that

f �X �
mX
k��

�kvk and f � Y �
mX
k��

�kvk�

Now

B�X	�p	 � f�p	B�X	�p	 � B�f �X	�p	 �
mX
k��

�k�p	B�vk	�p	

��
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and similarily B�Y 	�p	 �
Pm

k�� �k�p	B�vk	�p	� Now Xp � Yp so
�k�p	 � �k�p	 for all k� This implies that B�X	�p	 � B�Y 	�p	�

By Bp we denote the restriction Bp � Bj�r
l��TpM

of B to the r�fold
tensor product of TpM given by

Bp 
 ��X�	p� � � � � �Xr	p	 �� B�X�� � � � � Xr	�p	�

The tensor �eld B is said to be smooth if for allX�� � � � � Xr � C��TM	
the map B�X�� � � � � Xr	 
 M � C�

s �TM	 with

B�X�� � � � � Xr	 
 p �� Bp��X�	p� � � � � �Xr	p	

is smooth�

De�nition ���� Let M be a smooth manifold� A Riemannian

metric on M is a smooth tensor �eld g 
 C�
� �TM	 � C�

� �TM	 such
that for each p �M the restriction gp � gjTpM�TpM 
 TpM �TpM � R

with

gp 
 �Xp� Yp	 �� g�X� Y 	�p	

is an inner product on TpM � The pair �M� g	 is called a Riemannian

manifold� The study of Riemannian manifolds is called Riemannian

Geometry� Geometric properties of �M� g	 which only depend on the
metric g are called intrinsic �or metric	 properties�

De�nition ���� Let �M� g	 be a Riemannian manifold and � 
 I �
M be a curve in M � Then the length L��	 of � is de�ned by

L��	 �

Z
I

p
g��	�t	� �	�t		dt�

Example ���� By the m�dimensional Euclidean space we mean
the Riemannian manifold Em � �Rm � h� iRm	 where

hu� viRm �
mX
k��

ukvk�

Example ���� By the punctured round sphere we mean the
Riemannian manifold

$m � �Rm �
�

�� � jxj�
Rm

	�
h� iRm	�

Let � 
 R� � $m be the curve with � 
 t �� �t� �� � � � � �	� Then

L��	 � �

Z �

�

ph�	� �	i
� � j�j� dt � �

Z �

�

dt

� � t�
� ��arctan�t	��� � �
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Example ���� By the hyperbolic space we mean the Riemann�
ian manifold

Hm � �Bm
� ��	�

�

��� jxj�
Rm

	�
h� iRm	

where Bm
� ��	 is the m�dimensional open unit ball

Bm
� ��	 � fx � R

m j jxjRm � �g�
Let � 
 ��� �	 � Hm be a curve given by � 
 t �� �t� �� � � � � �	� Then

L��	 � �

Z �

�

ph�	� �	i
�� j�j� dt � �

Z �

�

dt

�� t�
� �log�

� � t

�� t
	��� � �

De�nition ��	� Let �Mm� g	 be a Riemannian manifold and �M �m

be an �m�dimensional submanifold of M � Then the smooth tensor �eld
h 
 C�

� �T �M	 � C�
� �T �M	 with

h�X� Y 	 
 p �� gp�Xp� Yp	�

is a Riemannian metric on �M called the induced metric on �M in
�M� g	�

Example ��
� The Euclidean metric h� iRm on R
m induces Rie�

mannian metrics on the following submanifolds�

i� the �m� �	�dimensional sphere Sm�� � R
m �

ii� the tangent bundle TSn � Rm where m � �n � ��
iii� the n�dimensional torus T n � R�n �
iv� the n�dimensional real projective space RP n � Sym�Rn��	 � R

m

where m � �n � �	�n � �	���

Example ���� On C n�n we have the Euclidean metric given by

hA�Bi � Reftrace� �At �B	g�
This induces metrics on submanifolds of C n�n such as Rn�n and all the
matrix Lie groups GL�C n	� SL�C n	� U�n	� SU�n	� GL�Rn	� SL�Rn	�
O�n	 and SO�n	�

We now need the following fact which should be known to any
graduate student from a course on topology�

Fact ����� Every locally compact Hausdor� space with countable
basis is paracompact�

Corollary ����� Let �M� �A	 be a topological manifold� Let the col�
lection �U�	�
I be an open covering of M such that for each � � I the
pair �U�� 
�	 is a chart on M � Then there exists

i� a locally �nite open re�nement �W�	�
J such that for all � � J�

W� is an open neighbourhood for a chart �W�� 
�	 � �A� and
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ii� a partition of unity �f�	�
J such that support�f�	 � W��

Theorem ����� Let �Mm� �A	 be a smooth manifold� Then there
exists a Riemannian metric g on M �

Proof� For each p � M let �Up� �p	 be a chart such that p � Up�
Then �Up	p
M is an open covering as in Corollary ����� Let �W�	�
J be
a locally �nite open re�nement� �W�� x�	 be charts on M and �f�	�
J
be a partition of unity such that support�f�	 is contained in W�� Let
h� iRm be the Euclidean metric on Rm � Then for � � J de�ne g� 

C�

� �TM	 � C�
� �TM	 by

g��
�

�x�k
�
�

�x�l
	�p	 �

�
f��p	 � hek� eliRm if p � W�

� if p �� W�

Then g 
 C�
� �TM	 � C�

� �TM	 given by g �
P

�
J g� is a Riemannian
metric on M �

De�nition ����� Let �M� g	 and �N� h	 be Riemannian manifolds�
A map � 
 �M� g	 � �N� h	 is said to be conformal if there exists a
function � 
 M � R such that

e��p�gp�Xp� Yp	 � h��p��d�p�Xp	� d�p�Yp		�

for all X� Y � C��TM	 and p � M � The function e� is called the
conformal factor of �� A conformal map with � 	 � is said to be
isometric� An isometric di�eomeorphism is called an isometry�

Example ����� Equip the orthogonal group O�m	 � R
m�m with

the induced metric given by hA�Bi 
� trace�At �B	� For x � O�m	 the
left translation Lx 
 O�m	 � O�m	 by x is given by Lx 
 y �� xy� The
tangent space TyO�m	 of O�m	 at y is TyO�m	 � fy � Zj Z � Zt � �g
and the di�erential �dLx	y 
 TyO�m	 � TxyO�m	 is given by �dLx	y 

yZ �� xyZ� We then have

h�dLx	y�yZ	� �dLx	y�yW 	ixy � trace��xyZ	txyW 	

� trace�ZtytxtxyW 	

� trace�yZ	t�yW 	�

� hyZ� yW iy
This shows that for each x � O�m	 the left translation Lx 
 O�m	 �
O�m	 is an isometry�

De�nition ����� Let G be a Lie group� A Riemannian metric h� i
on G is said to be left�invariant if for each x � G the left�translation
Lx 
 G� G is an isometry�
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Proposition ����� Let G be a Lie group and h� ie be an inner prod�
uct on the tangent space TeG at the neutral element e� Then for each
x � G the bilinear map h� ix 
 TxG� TxG� R with

h�dLx	e�Ze	� �dLx	e�We	ix � hZe�Weie
is an inner product on the tangent space TxG� The smooth tensor �eld
h� i 
 C�

� �TG	 � C�
� �TG	 given by

h� i 
 �Z�W 	 �� �hZ�W i 
 x �� hZx�Wxix	

is a left�invariant Riemannian metric on G�

Proof� See Exercise ���

Example ���	� Let �Sm� h� iRm��	 be the standard sphere� Let
the linear space of symmetric R�m�����m��� matrices Sym�Rm��	 be
equipped with the metric g given by

g�A�B	 �
�

�
� trace�At �B	�

As in Example �� de�ne a map � 
 Sm � Sym�Rm��	 by

� 
 p �� ��p 
 q �� �hq� pip� q	�

Let �� � 
 R � Smbe two curves such that ���	 � p � ���	 and put
a � �	��	� b � � 	��	� Then for � � f�� �g we have

d�p��
	��		 � �q �� �hq� �	��	ip � �hq� pi�	��		�

Let B be an orthonormal basis for Rm�� � then

g�d�p�a	� d�p�b		 �
�

�
trace�d�p�a	t � d�p�b		

�
�

�

X
q
B

hhq� aip � hq� pia� hq� bip � hq� pibi

�
�

�

X
q
B

fhp� piha� qihq� bi� ha� bihp� qihp� qig

�
�

�
fha� bi� ha� big

� ha� bi
This proves that the immersion � is isometric�

The following result was proved by J� Nash in his famous paper

The embedding problem for Riemannian manifolds� Ann� of Math�
�� �����	� ����� It implies that every Riemannian manifold can be
realized as a submanifold of a Euclidean space�
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Deep Result ���
� For  � r � � let �M� g	 be a Riemannian
Cr�manifold� Then there exists an isometric Cr�embedding into a Eu�
clidean space�

We will now see that parametrizations can be very useful tools for
the study of the intrinsic geometry of a Riemannian manifold �M� gM	�

Let p � M � �
 
 U � M be a parametrization of M with q � U and
�
�q	 � p� The di�erential d �
q 
 TqR

m � TpM is bijective so there
exist neighbourhoods Uq of q and Up of p such that the restriction


 � �
jUq 
 Uq � Up is a di�eomorphism� On Uq we have the frame

fe�� � � � � emg for TUq so fd �
�e�	� � � � � d �
�em	g is a local frame for TM

over Up� We then de�ne the pull�back metric g � �
�gM on Uq by

gkl � g�ek� el	 � gM�d �
�ek	� d �
�el		�

Then �
 
 Uq � Up is an isometry so the intrinsic geometry of �Uq� g	
and that of �Up� gM	 are exactly the same�

Example ����� Let G be a matrix Lie group and e be the neutral
element of G� Let fX�� � � � � Xmg be a basis for the Lie algebra TeG�
For x � G de�ne 
x 
 Rm � G by


x 
 �t�� � � � � tm	 �� Lx�
mY
k��

exp�tkXk		�

Then �d
x	��ek	 � Xk�x	 for all k� This means that the di�erential
�d
x	� 
 T�R

m � TxG is an isomorphism so there exist open neigh�
bourhoods U� of � and Ux of x such that the restriction of 
 to U� is
bijective onto its image Ux�

De�nition ����� Let �M� g	 be a Riemannian manifold and �M be
a submanifold of M � For a point p � �M we de�ne the normal space

Np
�M of �M at p by

Np
�M � fv � TpM j gp�v� w	 � � for all w � Tp �Mg�

For all p we have the orthogonal decomposition

TpM � Tp �M Np
�M�

The normal bundle of �M in M is de�ned by

N �M � f�p� v	j p � �M� v � Np
�Mg�

Theorem ����� Let �Mm� g	 be a Riemannian manifold and �M �m

be a smooth submanifold of M � Then the normal bundle �N �M� �M��	
is a smooth �m� �m	�dimensional vector bundle over �M �
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Proof� See Exercise ����

Example ����� The orthogonal group O�m	 is a subset of the
linear space R

m�m equipped with the Riemannian metric

hA�BiRm�m � trace�AtB	�

We have already seen that the tangent space TeO�m	 of O�m	 at the
neutral element e is

TeO�m	 � fZ � R
m�m jZ � Zt � �g

and the tangent bundle TO�m	 of O�m	 is given by

TO�m	 � f�x� xZ	j x � O�m	� Z � TeO�m	g�
The space Rm�m has a linear decomposition

R
m�m � Sym�Rm	 TeO�m	

and every element X � R
m�m can be decomposed X � XN � XT in

its symmetric and skew�symmetric parts given by

XN �
�

�
�X � X t	 and XT �

�

�
�X �X t	�

If Z � TeO�m	 and W � Sym�Rm	 then

hZ�W iRm�m � trace�ZtW 	 � trace�W tZ	

� trace�ZW t	 � trace��ZtW 	

� �hZ�W iRm�m
This implies that the normal bundle NO�m	 of O�m	 in Rm�m is

given by

NO�m	 � f�x� xW 	j x � O�m	� W � Sym�Rm	g�
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Exercises

Exercise ���� For m � N
� let the stereographic projection

�m 
 �Sm � f��� �� � � � � �	g� h� iRm��	 � �Rm �
�

�� � jxj�	� h� iRm	

be given by

�m 
 �x�� � � � � xm	 �� �

�� x�
�x�� � � � � xm	�

Prove that �m is an isometry for each m�

Exercise ���� Let B�
���	 be the open unit disk in the complex

plane equipped with the hyperbolic metric g�� 	 � ���� � jzj�	�h� iR��
Prove that the map

� 
 B�
���	 � �fz � C j Im�z	 	 �g� �

Im�z	�
h� iR�	

given by � 
 z �� �z � i	��iz � �	 is an isometry�

Exercise ���� Find a proof for Proposition �����

Exercise ���� On the real general linear group GL�Rm	 we de�ne
metrics g� h by

gx�xZ� xW 	 � trace��xZ	t � xW 	 and hx�xZ� xW 	 � trace�Zt �W 	�

They induce metrics �g� �h on the real special linear group SL�Rm	�

i� Which of the metrics g� h� �g� �h are left�invariant�
ii� Find the normal space NeSL�Rm	 of SL�Rm	 in GL�Rm	 w�r�t g
iii� Find the normal bundle NSL�Rm	 of SL�Rm	 in GL�Rm	 w�r�t

h�

Exercise ���� Find a proof for Theorem �����



CHAPTER �

The Levi�Civita Connection

De�nition 	��� Let �E�M� �	 be a smooth vector bundle over M �

A connection on �E�M� �	 is a map �r 
 C��TM	�C��E	 � C��E	
such that

i� �rX�� � v �  � w	 � � � �rXv �  � �rXw�

ii� �rX�f � v	 � X�f	 � v � f � �rXv�

iii� �r�f �X � g � Y 	v � f � �rXv � g � �rYv�

for all ��  � R� X� Y � C��TM	� v� w � C��E	 and f� g � C�
� �TM	�

and the map � �rXv	 
 M � E with � �rXv	 
 p �� � �rXv	p is smooth� A

section v � C��E	 is said to be parallel with respect to the connection
�r if �rXv � � for all X � C��TM	�

De�nition 	��� Let M be a smooth manifold and �r be a connec�
tion on the tangent bundle �TM�M� �	� Then we de�ne the torsion

T 
 C�
� �TM	 � C�

� �TM	 of �r by

T �X� Y 	 � �rXY � �rYX � �X� Y ��

where �� � is the Lie bracket on C��TM	�

De�nition 	��� Let M be a smooth manifold� A connection �r
on the tangent bundle �TM�M� �	 is said to be torsionfree if the
corresponding torsion T vanishes i�e� T �X� Y 	 � � for all X� Y �
C��TM	� If g is a Riemannian metric on M � then �r is said to be
metric �or compatible with g	 if

X�g�Y� Z		 � g� �rXY �Z	 � g�Y� �rXZ	

for all X� Y� Z � C��TM	�

Lemma 	��� LetM be a smooth manifold and �� � be the Lie bracket
on the tangent bundle TM � Then

i� �X� f � Y � � X�f	 � Y � f � �X� Y ��
ii� �f �X� Y � � �Y �f	 �X � f � �X� Y �

for all X� Y � C��TM	 and f � C�
� �TM	�

��
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Proof� If h � C�
� �TM	� then

�X� f � Y ��h	 � X�f � Y �h		� f � Y �X�h		

� X�f	 � Y �h	 � f �X�Y �h		� f � Y �X�h		

� �X�f	 � Y � f � �X� Y �	�h	

This proves the �rst statement and the second follows from the skew�
symmetry of the Lie bracket�

Theorem 	��� Let �M� g	 be a Riemannian manifold and let the
map r 
 C�

� �TM	 � C��TM	 be given by

g�rXY �Z	 �
�

�
fX�g�Y� Z		 � Y �g�Z�X		� Z�g�X� Y 		

�g�Z� �X� Y �	 � g�Y� �Z�X�	� g�X� �Y� Z�	g�

Then r is a connection on the tangent bundle �TM�M� �	�

Proof� It follows from De�nition ��� Theorem ���� and the fact
that g is a tensor �eld that

g�rX�� � Y� �  � Y�	� Z	 � � � g�rXY�� Z	 �  � g�rXY�� Z	

and

g�rY� � Y�
X�Z	 � g�rY�X�Z	 � g�rY�X�Z	

for all ��  � R and X� Y�� Y�� Z � C��TM	� Furthermore we have

g�rXfY � Z	

�
�

�
fX�f � g�Y� Z		 � f � Y �g�Z�X		� Z�f � g�X� Y 		

�g�Z�X� f � Y �	 � f � g�Y� �Z�X�	� g�X� �f � Y� Z�	g
�

�

�
fX�f	 � g�Y� Z	 � f �X�g�Y� Z		 � f � Y �g�Z�X		

�Z�f	 � g�X� Y 	� f � Z�g�X� Y 		 � g�Z�X�f	 � Y � f � �X� Y �	

�f � g�Y� �Z�X�	� g�X��Z�f	 � Y � f � �Y� Z�	g
� X�f	 � g�Y� Z	 � f � g�rXY �Z	

� g�X�f	 � Y � f � rXY �Z	
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and

g�rf �XY �Z	

�
�

�
ff �X�g�Y� Z		 � Y �f � g�Z�X		� Z�f � g�X� Y 		

�g�Z� �f �X� Y �	 � g�Y� �Z� f �X�	� f � g�X� �Y� Z�	g
�

�

�
ff �X�g�Y� Z		 � Y �f	 � g�Z�X	 � f � Y �g�Z�X		

�Z�f	 � g�X� Y 	� f � Z�g�X� Y 		

�g�Z��Y �f	 �X	 � g�Z� f � �X� Y �	 � g�Y� Z�f	 �X	

f � g�Y� �Z�X�	� f � g�X� �Y� Z�	g
� f � g�rXY �Z	�

This proves that r is a connection on the tangent bundle �TM�M� �	�

De�nition 	��� The connectionr 
 C��TM	�C��TM	 � C�
� �TM	

de�ned in Theorem ��� is called the LeviCivita connection�

The next result is called The Fundamental Theorem of Rie

mannian Geometry

Theorem 	�	� Let �M� g	 be a Riemannian manifold� Then the
Levi�Civita connection is a unique torsion�free and metric connection
on �TM�M� �	�

Proof� The di�erence g�rXY �Z	 � g�rYX�Z	 equals twice the

skew�symmetric �w�r�t the pair �X� Y 		 part of the right hand side in
Theorem ���� This is the same as

�
�

�
fg�Z� �X� Y �	� g�Z� �Y�X�	g � g�Z� �X� Y �	�

This proves that the Levi�Civita connection is torsion�free�
The sum g�rXY �Z	�g�rXZ� Y 	 equals twice the symmetric �w�r�t

the pair �Y� Z		 part on the right hand side of Theorem ���� This is
exactly

�
�

�
fX�g�Y� Z		 � X�g�Z� Y 		g � X�g�Y� Z		�

This shows that the Levi�Civita connection is compatible with the Rie�
mannian metric g on M �

Let us now assume that �r is a torsion�free and metric connection�
Then it is easily seen that the following equations hold

g� �rXY �Z	 � X�g�Y� Z		� g�Y� �rXZ	�
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g� �rXY �Z	 � g��X� Y �� Z	 � g� �rYX�Z	

� g��X� Y �� Z	 � Y �g�X�Z		� g�X� �rYZ	�

� � �Z�g�X� Y 		 � g� �rZX� Y 	 � g�X� �rZY 	

� �Z�g�X� Y 		 � g� �rXZ � �Z�X�� Y 	 � g�X� �rYZ � �Y� Z�	�

We add these equations and obtain

� � g� �rXY �Z	 � fX�g�Y� Z	 � g��X� Y �� Z	 � Y �g�X�Z		

�Z�g�X� Y 		 � g���Z�X�� Y 	� g�X� �Y� Z�	g
� � � g�rXY �Z	�

This implies that �r � r and thereby proves the uniqueness of r�

A connection �r on �TM�M� �	 can be thought of as a rule for di�er�
entiating a vector �eld Y � C��TM	 in the direction of another X �
C��TM	 by �rXY � The last theorem shows that given a Riemannian
metric g on M there is only one way of doing this in a metric and
torsionfree manner� The Levi�Civita connection r is by de�nition
determined by the metric g so it is an intrinsic object�

De�nition 	�
� Let G be a Lie group� For a left�invariant vector
�eld X � g we de�ne a map ad�X	 
 g� g by

ad�X	 
 Z �� �X�Z��

Proposition 	��� Let �G� h� i	 be a Lie group equipped with a left�
invariant metric such that for all X � g� ad�X	 is skew�symmetric with
respect to h� i i�e�

had�X	Y� Zi � �hY� ad�X	Zi
for all X� Y� Z � g� Then the Levi�Civita connection of �G� h� i	 is given
by rXY � �

�
�X� Y � for all left�invariant X� Y � g�

Proof� If X� Y� Z � g then it follows from the fact that h� i is left�
invariant that the function hY� Zi 
 G� R is constant so X�hY� Zi	 �
�� It then follows from the de�nition of the Levi�Civita connection and
the fact that ad is skew�symmetric that

hrXY � �

�
�X� Y �� Zi �

�

�
fhY� �Z�X�i � hX� �Y� Z�ig

�
�

�
fhY� ad�Z	Xi� had�Z	Y�Xig

� �
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Example 	���� Let �M� gM �r	 be a Riemannian manifold with
Levi�Civita connection� Further let �U� x	 be a local coordinate on M
and de�ne Xi � �

�xi
� C��TU	� Then fX�� � � � � Xmg is a local frame of

TM on U � For �U� x	 we de�ne the Christo�el symbols %k
ij 
 U � R

of r with respect to �U� x	 by
mX
k��

%k
ijXk � rXi

Xj�

On the subset x�U	 of Rm we de�ne the metric g by

gij � g�ei� ej	 � gM�
�

�xi
�
�

�xj
	�

Following Lemma ���� and Exercise ��� we obtain for the di�erential
dx of x

dx��Xi� Xj�	 � �dx�Xi	� dx�Xj	� � �ei� ej� � �

so �Xi� Xj� � � since dx is bijective� From the de�nition of the Levi�
Civita connection we get

mX
k��

%k
ijgkl � h

mX
k��

%k
ijXk� Xli

� hrXi
Xj� Xli

�
�

�
fXihXj� Xli� XjhXl� Xii �XlhXi� Xjig

�
�

�
f�gjl
�xi

�
�gli
�xj

� �gij
�xl

g�

If gkl � �g��	kl then

%k
ij �

�

�

mX
l��

gklf�gjl
�xi

�
�gli
�xj

� �gij
�xl

g�

De�nition 	���� Let M be a smooth manifold� �M be a subman�
ifold and �X � C��T �M	 be a vector �eld on �M � Let U be an open
subset of M such that U � �M 
� �� A local extension of �X on U is a
vector �eld X � C��TU	 such that �Xp � Xp for all p � �M � If U � M
then X is called a global extension�

Fact 	���� Every vector �eld �X � C��T �M	 has a global extension
X � C��TM	�

Remark 	���� Let �M� g	 be a Riemannian manifold and �M be a
submanifold equipped with the induced metric �g� Let Z � C��TM	
be a vector �eld on M and �Z � Zj �M 
 �M � TM be the restriction



�	 �� THE LEVICIVITA CONNECTION

of Z to �M � Note that �Z is not necessarily an element of C��T �M	�
For each p � �M the tangent vector �Zp � TpM can be decomposed
�Zp � � �Zp	

T � � �Zp	
N in a unique way such that � �Zp	

T � Tp �M and

� �Zp	
N � Np

�M � For the vector �eld we write �Z � �ZT � �ZN �

Let �X� �Y � C��T �M	 be vector �elds on �M and X� Y � C��TM	
be their extensions onto M � If p � �M then �rXY 	p only depends on the

value Xp � �Xp and the value of Y along some curve � 
 ���� �	 � M

such that ���	 � p and  ���	 � Xp � �Xp� For this see Remark ���
Hence we can choose the curve � such that ������ �		 is contained in
�M � Then �Y��t� � Y��t� for t � ���� �	� This implies that �rXY 	p only

depends on �Xp and the value of �Y along �� but not on the way �X and
�Y are extended� This implies that the following maps are well�de�ned�

De�nition 	���� For the above situation we de�ne

�r 
 C�
� �T �M	 � C�

� �T �M	 and B 
 C�
� �T �M	 � C�

� �N �M	

with
�r�X

�Y � �rXY 	T and B� �X� �Y 	 � �rXY 	N �

It is easily proved that B is symmetric and hence tensorial in both its
arguments� see Exercise ���� B is called the second fundamental

form of �M in �M� g	�

The Levi�Civita connection on �M� g	 induces the Levi�Civita con�
nection on any submanifold �M and a metric connection on its normal
bundle N �M 


Theorem 	���� Let �M� g	 be a Riemannian manifold and �M be
a submanifold of M with the induced metric �g� Then �r 
 C�

� �T �M	 �
C�

� �T �M	 is the Levi�Civita connection of the submanifold � �M� �g	�

Proof� See Exercise ����

Proposition 	���� Let �M� g	 be a Riemannian manifold and �M
be a submanifold with the induced metric �g� Let X�Z � C��TM	 be
vector �elds extending �X � C��T �M	 and �Z � C��N �M	� Then the
map �r 
 C��T �M	� C��N �M	 � C��N �M	 given by

�r�X
�Z � �rXZ	N

is a well�de�ned connection on the normal bundle N �M � Furthermore

�X�h �Z� �W i	 � h �r�X
�Z� �W i� h �Z� �r�X

�W i
for all �X � C��T �M	 and �Z� �W � C��N �M	�

Proof� See Exercise ����
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Exercises

Exercise 	��� Prove that the torsion T in De�nition ��� is a tensor
�eld of type ��� �	�

Exercise 	��� Let SO�m	 be the special orthogonal group equipped
with the metric

hX� Y i �
�

�
trace�X t � Y 	�

Prove that h� i is left�invariant and that for left�invariant vector �elds
X� Y � so�m	 we have rXY � �

�
�X� Y �� Let A�B�C be elements of the

Lie algebra so�	 with

Ae �

�
� � �� �

� � �
� � �

�
A � Be �

�
� � � ��

� � �
� � �

�
A � Ce �

�
� � � �

� � ��
� � �

�
A �

Prove that fA�B�Cg is an orthonormal basis for so�	 and calculate
�rAB	e� �rBC	e and �rCA	e�

Exercise 	��� Let SL�R�	 be the real special linear group equipped
with the metric

hX� Y ip � trace��p��X	t � �p��Y 		�

Find a formula for the Levi�Civita connection rXY for X� Y � sl�R�	�

Calculate �rAB	e� �rBC	e and �rCA	e where A�B�C � sl�R�	 are given
by

Ae �

�
� ��
� �

�
� Be �

�
� �
� �

�
� Ce �

�
� �
� ��

�
�

Exercise 	��� Let �M� g	 be a Riemannian manifold with Levi�
Civita connection r and � �M� �g	 be a submanifold with the induced
metric� Prove that the second fundamental form B of �M in M is
symmetric and tensorial in both its arguments�

Exercise 	��� Find a proof for Theorem �����

Exercise 	��� Find a proof for Proposition �����
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CHAPTER �

Geodesics

De�nition 
��� Let �TM�M� �	 be the tangent bundle of the smooth
manifold M � A vector �eld X along a curve � 
 I �M is a curve
X 
 I � TM such that � �X � �� We denote by C�

� �TM	 the set of
all smooth vector �elds along �� It is easily seen that the operations �
and � given by

i� �� �X	�t	 � � �X�t	�
ii� �X � Y 	�t	 � X�t	 � Y �t	�

make �C�
� �TM	��� �	 into a vector space�

Proposition 
��� Let �M� g	 be a smooth Riemannian manifold
and � 
 I �M be a smooth curve� Then there exists a unique operator
D
dt


 C�
� �TM	 � C�

� �TM	 such that for all ��  � R and f � C��I�R	�

i� D
dt

�� �X �  � Y 	 � � � �D
dt
X	 �  � �D

dt
Y 	�

ii� D
dt

�f � Y 	 � df

dt
� Y � f � �D

dt
Y 	� and

iii� if J� is an open subset of I such that t� � J� and X � C��TM	
is a vector �eld with X��t� � Y �t	 for all t � J� then

�
D

dt
Y 	�t�	 � �r �X	��t���

Proof� Let us �rst prove the uniqueness� so for the moment we
assume that such an operator D

dt
exists� For a point t� � I choose a

chart �U� x	 on M such that ��t�	 � U � Then a vector �eld Y along �
can be written in the form

Y �t	 �
mX
k��

�k�t	
�

�xk
j��t�

for some functions �k � C��I�R	� The second condition implies that

D

dt
Y �t	 �

mX
k��

�k�t	�
D

dt

�

�xk
	�t	 �

mX
k��

 �k�t	
�

�xk
j��t����	

Let x � ��t	 � �x��t	� � � � � xm�t		 then

 ��t	 �
mX
k��

�  xk	�t	
�

�xk
j��t�

��
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and the third condition for D
dt

imply that

�
D

dt

�

�xj
	��t� � �r �

�
�xj

	��t� �
mX
k��

�  xk	�t	�r �
�xk

�
�xj

	��t����	

Together equations ��	 and ��	 give

D

dt
Y �t	 �

mX
k��

f  �k�t	 �
mX

i�j��

%k
ij � ��t	�  xi	�t	�j�t	g �

�xk
j��t���	

This shows that the operator D
dt

is uniquely determined�
It is easily seen that if we use equation �	 for de�ning an operator

D
dt

then it satis�es the necessary conditions of Proposition ���� This

proves the existence of the operator D
dt

�

Remark 
��� It follows from the fact that the Levi�Civita connec�
tion is tensorial in its �rst argument i�e�

rf �XY � f � rXY
and Proposition ��� that the value �rXY 	p of rXY at p only depends
on the value of Xp of X at p and the values of Y along some curve �
satisfying ���	 � p and  ���	 � Xp� The equality

�
D

dt
Y 	�t�	 � �r �X	��t��

in Proposition ��� allows us to use the notation r ��Y for D
dt
Y �

De�nition 
��� Let �M� g	 be a Riemannian manifold and � 
 I �
M be a C��curve� A vector �eld X along � is said to be parallel along
� if

r �X � ��

The curve � 
 I �M is called a geodesic if the vector �eld  � is parallel
along � i�e�

r �  � � ��

Proposition 
��� Let �M� g	 be a Riemannian manifold� � 
 I �
M be a smooth curve and X� Y be parallel vector �elds along �� Then
the function g�X� Y 	 
 I � R given by t �� g��t��X��t�� Y��t�	 is constant�
In particular if � is a geodesic then g�  ��  �	 is constant along ��

Proof� Using the fact that the Levi�Civita connection is metric
we obtain

d

dt
�g�X� Y 		 � g�r �X� Y 	 � g�X�r �Y 	 � ��

This proves that the function g�X� Y 	 is constant along ��
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Corollary 
��� Let �M� g	 be a Riemannian manifold and � 
 I �
M be a smooth curve� If X�� � � � � Xm are parallel vector �elds along �
such that for some p � ��I	 the set f�X�	p� � � � � �Xm	pg is a �orthonor�
mal	 basis for the tangent space TpM � then the set f�X�	q� � � � � �Xm	qg
is a �orthonormal	 basis for TqM for all q � ��I	�

Theorem 
�	� Let �M� g	 be a Riemannian manifold and I � �a� b�
be an interval on the real line R� Further let � 
 I � M be a smooth
curve� t� � I and X� � T��t��M � Then there exists a unique parallel
vector �eld Y along � such that X� � Y��t���

Proof� Without loss of generality we may assume that the image
of � lies in a chart �U� x	� On the interval I the tangent �eld  � is
represented in our local coordinate by

 ��t	 �
mX
i��

�i�t	
�

�xi
j��t�

with some functions �i � C��I�R	� Similarily let Y be a vector �eld
along � represented by

Y �t	 �
mX
k��

�k�t	
�

�xk
j��t��

Then

r �Y �t	 �
mX
j��

f  �j�t	
�

�xj
j��t� � �j�t	�r �

�
�xj

	��t�g

�
mX
k��

f  �k�t	 �
mX

i�j��

�j�t	�i�t	%
k
ij � ��t	g �

�xk
j��t��

This implies that r �Y 	 � if and only if

 �k�t	 �
mX

i�j��

�j�t	�i�t	%
k
ij � ��t	 � �

for all k � �� � � � � m� Since I is compact if follows from classical results
on ODEs that to each initial value ��t�	 � �v�� � � � � vm	 � Rm with

X� �
mX
k��

vi
�

�xk
j��t��
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there exists a unique solution � � ���� � � � � �m	 to the above system�
This gives us the unique parallel vector �eld Y

Y �t	 �
mX
k��

�k�t	
�

�xk
j��t�

along I�

Theorem 
�
� Let �M� g	 be a Riemannian manifold� If p � M
and v � TpM then there exists an open interval I � ���� �	 and a
unique geodesic � 
 I �M such that ���	 � p and  ���	 � v�

Proof� Let �U� x	 be a local chart on M such that p � U � For
a C��curve � 
 J � U we put �i � xi � � 
 J � R� The curve
x � � 
 J � R

m is C� so we have

�dx	��t��  ��t		 �
mX
i��

 �i�t	ei�

This implies that

 ��t	 �
mX
i��

 �i�t	
�

�xi
j��t��

By di�erentation we obtain

r �  � �
mX
j��

r �  �j�t	
�
�xj
j��t�

�
mX
j��

f��j�t	
�

�xj
j��t� �

mX
i��

 �j�t	  �i�t	�r �
�xi

�
�xj

	��t�g

�
mX
k��

f��k�t	 �
mX

i�j��

 �j�t	  �i�t	%
k
ij � ��t	g �

�xk
j��t��

Hence the curve � is a geodesic if and only if

��k�t	 �
mX

i�j��

 �j�t	  �i�t	%
k
ij � ��t	 � �

for all k � �� � � � � m� It follows from classical results on ODEs that
for initial values q� � x�p	 and w� � �dx	p�v	 there exists an open
interval ���� �	 and an unique solution ���� � � � � �m	 satisfying the initial
conditions

�����	� � � � � �m��		 � q� and �  ����	� � � � �  �m��		 � w��
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De�nition 
��� A Riemannian manifold �M� g	 is called complete

if for each point �p� v	 � TM there exists a geodesic � 
 R �M de�ned
on the whole of R such that ���	 � p and  ���	 � v�

Example 
���� Let �M� g	 � Em be the Euclidean space� For the
trivial chart idRm 
 Rm � Rm the metric is given by gij � �ij� so %k

ij � �
for all i� j� k � �� � � � � m� This means that � 
 I � Rm is a geodesic if
and only if ���t	 � � or equivalently ��t	 � t � a � b for some a� b � Rm �
This proves that the geodesics are the straight lines�

Proposition 
���� Let �M� g	 be a Riemannian manifold and �M
be a submanifold equipped with the induced metric �g� A curve � 
 I �
�M is a geodesic in �M if and only if �r �  �	T � ��

Proof� The statement follows directly from the fact that �r �  � �

�r �  �	T �

Example 
���� Let Em�� be the �m � �	�dimensional Euclidean
space and Sm � Em�� be the unit sphere with the induced metric� At
a point p � Sm the normal space NpS

m is simply the line spanned by
p� If � 
 I � Sm is a curve on the sphere� then r �  � � ��T � �� � ��N �

�� � h��� �i�� This shows that � is a geodesic if and only if

�� � h��� �i����	

For a point �p� v	 � TSm de�ne the curve � � ��p�v� 
 R � Sm by

� 
 t ��
�

p if v � �
cos�jvjt	 � p � sin�jvjt	 � v�jvj if v 
� ��

Then one easily checks that ���	 � p�  ���	 � v and that � satis�es the
geodesic equation ��	� This implies that

i� every geodesic on Sm is a great circle�
ii� the standard sphere is complete�

Example 
���� Let Sym�Rm��	 be equipped with the metric

hA�Bi �
�

�
trace�At �B	�

Then we know that the map � 
 Sm � Sym�Rm��	 with

� 
 p �� ��ppt � I	

is an isometric immersion such that ��Sm	 �� RPm i�e� the m�dimensional
real projective space� The map � is locally an isometry� so the geodesics
on RPm are exactly the images of geodesics on Sm� This shows that
the real projective space is complete�
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De�nition 
���� Let �M� g	 be a Riemannian manifold and � 

I � M be a Cr�curve on M � A variation of � is a Cr�map � 

���� �	� I �M such that for all s � I� ���s	 � ���� s	 � ��s	� If the
interval is compact i�e� of the form I � �a� b�� then the variation � is
called proper if for all t � ���� �	� �t�a	 � ��a	 and �t�b	 � ��b	�

De�nition 
���� Let �M� g	 be a Riemannian manifold and � 

I � M be a C��curve on M � For every compact interval �a� b� � I we
de�ne the energy functional E�a�b� by

E�a�b���	 �
�

�

Z b

a

g�  ��t	�  ��t		dt�

A C��curve � 
 I � M is called a critical point for the energy
functional if every proper variation � of �j�a�b� satis�es

d

dt
�E�a�b���t		jt�� � ��

Theorem 
���� A C��curve � is a critical point for the energy
functional if and only if it is a geodesic�

Proof� For a C��map � 
 ���� �	 � I � M � � 
 �t� s	 �� ��t� s	
we de�ne the vector �elds X � d�����s	 and Y � d�����t	 along ��
The following shows that the vector �elds X and Y commute


rXY �rYX � �X� Y � � �d�����s	� d�����t	� � d������s� ���t�	 � ��

since ����s� ���t� � ��
We now assume that � is a proper variation of �j�a�b�� Then

d

dt
�E�a�b���t		 �

�

�

d

dt
�

Z b

a

g�X�X	ds	

�
�

�

Z b

a

d

dt
�g�X�X		ds

�

Z b

a

g�rYX�X	ds

�

Z b

a

g�rXY �X	ds

�

Z b

a

�
d

ds
�g�Y�X		� g�Y�rXX		ds

� �g�Y�X	�ba �
Z b

a

g�Y�rXX	ds�
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The variation is proper� so Y �a	 � Y �b	 � �� Furthermore X��� s	 �
����s��� s	 �  ��s	� so

d

dt
�E�a�b���t		jt�� � �

Z b

a

g�Y ��� s	� �r �  �	�s		ds�

The last integral vanishes for every proper variation � of � if and only
if r �  � � ��

Remark 
��	� A geodesic � 
 I � �M� g	 is a special case of what
is called a harmonic map � 
 �M� g	 � �N� h	 between Riemannian
manifolds� Other examples are conformal immersions 
 
 �M�� g	 �
�N� h	 which parametrize the so called minimal surfaces in �N� h	� For
references on harmonic maps see

i� J� Eells� L� Lemaire� A report on harmonic maps� Bull� London
Math� Soc� ��� �����	� �����

ii� J� Eells� L� Lemaire� Selected topics in harmonic maps� CBMS
Regional Conf� Ser� in Math� ��� AMS ����	�

iii� J� Eells� L� Lemaire� Another report on harmonic maps� Bull�
London Math� Soc� ��� �����	� �������

iv� J� Jost� Harmonic maps � analytic theory and geometric signi��
cance� in Lecture Notes in Math� ���� Springer �����	

iv� F�E� Burstall� L� Lemaire� J� Rawnsley� The Harmonic Maps Bib�
liography�
http���www�bath�ac�uk�Departments�Maths�home�html

v� S� Gudmundsson� The Harmonic Morphisms Bibliography�
http���www�maths�lth�se�matematiklu�personal�sigma�
harmonic�bibliography�html

Let �Mm� g	 be an m�dimensional Riemannian manifold� p � M
and

Sm��
p � fv � TpM j gp�v� v	 � �g

be the unit sphere in the tangent space TpM at p� Then every point
w � TpM � f�g can be written as w � rw � vw� where rw � jwj and
vw � w�jwj � Sm��

p � For v � Sm��
p let �v 
 ���v� �v	 � M be

the maximal geodesic such that �v� �v � R� � f�g� �v��	 � p and
 �v��	 � v� De�ne

�p � inff�v� �vj v � Sm��
p g�

The unit sphere Sm��
p is compact� so �p 	 �� Put

Bm
�p

��	 � fv � TpM j gp�v� v	 � ��pg�
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De�nition 
��
� For the above situation we de�ne the exponen
tial map expp 
 Bm

�p
��	 �M at p by

expp 
 w ��
�

p if w � �
�vw�rw	 if w 
� ��

Note that for v � Sm��
p the line segment �v 
 ���p� �p	 � TpM

with �v 
 t �� t � v is mapped onto the geodesic �v i�e� locally we have
�v � expp ��v� One can prove that the map expp is smooth and it
follows from its de�nition that the di�erential d�expp	p 
 TpM � TpM
is the identity map for the tangent space TpM � It then follows from the
inverse mapping theorem that there exists an rp � R� such that if Up �
Bm
rp

��	 and Vp � expp�Up	 then expp jUp 
 Up � Vp is a di�eomorphism
parametrizing the open subset Vp of M �

Theorem 
���� Let �M� g	 be a Riemannian manifold� Then the
geodesics are locally the shortest paths between their endpoints� or more
precisly
 If p �M and � 
 ��� �� �M is a geodesic with ���	 � p� then
there exists an � with � � � � � such that for each q � ����� ��	� � is
the shortest path from p to q�

Proof� Let p � M � U � Bm
r ��	 � TpM and V � expp�U	 be such

that the restriction � � expp jU 
 U � V of the exponential map at p
is a di�eomorphism� On V we have the metric g which we pull back
via � to obtain �g � ��g on U � This makes � 
 �U� �g	 � �V� g	 into an
isometry� It then follows from the construction of the exponential map�
that the geodesics in �U� �g	 through the point � � ����p	 are exactly
the lines �v 
 t � t � v where v � TpM � Now let q � Bm

r ��	 � f�g
and �q 
 ��� �� � Bm

r ��	 be the curve �q 
 t �� t � q� Further let
� 
 ��� �� � Bm

r ��	 be any other curve such that ���	 � � and ���	 � q�
Along � we de�ne two vector �elds �� and  �rad by �� 
 t �� ���t	� ��t		
and

 �rad 
 t �� ���t	�
�g�t��  ��t	� ���t		

�g�t�����t	� ���t		
� ���t		�

Then it is easily checked that

j  �rad�t	j �
j�g�t��  ��t	� ���t		j

j��j �

and
d

dt
j���t	j �

d

dt

q
�g�t�����t	� ���t		 �

�g�  �� ��	

j��j �

Combining these two equations we obtain

j  �rad�t	j � d

dt
j���t	j�
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This implies that

L��	 �

Z �

�

j  �jdt

�
Z �

�

j  �radjdt

�
Z �

�

d

dt
j���t	jdt

� j����	j � j����	j
� jqj
� L��q	�

This proves that in fact �q is the shortest path connecting p and
q�

De�nition 
���� Let �M� g	 be a Riemannian manifold and �M be
a submanifold with the induced metric �g� Then

H �
�

�m
trace�B	 � C��N �M	

is called the mean curvature vector �eld of �M in M � The subman�
ifold �M is said to be

i� minimal in M if H 	 �� and
ii� totally geodesic if B 	 ��

Proposition 
���� Let �M� g	 be a Riemannian manifold and �M
be a submanifold equipped with the induced metric �g� Then the following
conditions are equivalent


i� �M is totally geodesic in M
ii� if � 
 I � �M is a curve� then the following conditions are equiv�

alent
a� � 
 I � �M is a geodesic in �M �
b� � 
 I �M is a geodesic in M �

Proof� The result immediately follows from the following decom�
position formula

r �  � � �r �  �	T � �r �  �	N � �r �  � � B�  ��  �	�

Proposition 
���� Let �M� g	 be a Riemannian manifold and �M
be a submanifold� For an arbitrary �p� v	 � T �M let ��p�v� 
 I � M

be the geodesic in M with ���	 � p and  ���	 � v� Then �M is totally
geodesic in �M� g	 if and only if ��p�v��I	 � �M for all �p� v	 � T �M �
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Proof� See Exercise ���

Proposition 
���� Let �M� g	 be a Riemannian manifold and �M
be a submanifold which is the �xpoint set of an isometry � 
 M � M �
Then �M is totally geodesic in M �

Proof� Let p � �M � v � Tp �M and � 
 I � M be the geodesic
with ���	 � p and  ���	 � v� The map � 
 M � M is an isometry so
� � � 
 I � M is a geodesic� The uniqueness result of Theorem ����
�����		 � ���	 and d��  ���		 �  ���	 then imply that ���	 � �� Hence
the image of the geodesic � 
 I � M is contained in �M � so following
Proposition ���� �M is totally geodesic in M �

Corollary 
���� If �m � m then the �m�dimensional sphere

S �m � f�x� �	 � R
�m�� � R

m� �m j jxj� � �g
is totally geodesic in

Sm � f�x� y	 � R
�m�� � R

m� �m j jxj� � jyj� � �g�
Proof� The submanifold S �m of Sm is the �xpoint set of the isom�

etry � 
 Sm � Sm with �x� y	 �� �x��y	�
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Exercises

Exercise 
��� Let H� � �R�R� � �
y�
h� iR�	 be the hyperbolic plane�

Find all geodesics in H��

Exercise 
��� Let the orthogonal group O�n	 be equipped with
the left�invariant metric g�A�B	 � trace�AtB	� Prove that a C��curve
� 
 ���� �	 � O�n	 is a geodesic if and only if �t � �� � ��t � ��

Exercise 
��� Find a proof for Proposition �����

Exercise 
��� Determine for which � � ��� ���	 the topological
��torus

T �

 � f�cos �ei�� sin �ei�	 � S	j �� � � Rg

is a minimal submanifold of the �dimensional sphere

S	 � f�z�� z�	 � C
� j jz�j� � jz�j� � �g�

Exercise 
��� Show that H �m � f�x� �	 � R �m � Rm� �m j jxj � �g is
a totally geodesic submanifold of Hm�

Exercise 
��� Determine the totally geodesic submanifolds of the
m�dimensional real projective space RPm �

Exercise 
�	� Let the orthogonal group O�n	 be equipped with
the left�invariant metric g�A�B	 � trace�AtB	 and let K � O�n	 be a
Lie subgroup� Prove that K is totally geodesic in O�n	�
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CHAPTER 	

The Curvature Tensor

De�nition ���� Let �M� g	 be a Riemannian manifold with Levi�
Civita connection r� For tensor �elds A 
 C�

r �TM	 � C�
� �TM	 and

B 
 C�
r �TM	 � C�

� �TM	 we de�ne their covariant derivatives

rA 
 C�
r���TM	 � C�

� �TM	 and rB 
 C�
r���TM	 � C�

� �TM	 by

rA 
 �X�X�� � � � � Xr	 �� �rXA	�X�� � � � � Xr	 �

X�A�X�� � � � � Xr		�
rX

i��

A�X�� � � � � Xi���rXXi� Xi��� � � � � Xr	

rB 
 �X�X�� � � � � Xr	 �� �rXB	�X�� � � � � Xr	 �

rX�B�X�� � � � � Xr		�
rX

i��

B�X�� � � � � Xi���rXXi� Xi��� � � � � Xr	�

A tensor �eld E of type �r� �	 or �r� �	 is said to be parallel if rE 	 ��
An example of a parallel tensor �eld of type ��� �	 is the Riemannian
metric g of �M� g	� For this see Exercise ����

Let �M� g	 be a Riemannian manifold� A vector �eld Z � C��TM	

de�nes a smooth tensor �eld �Z 
 C�
� �TM	 � C�

� �TM	 given by

�Z 
 X �� rXZ�
For two vector �elds X� Y � C��TM	 we de�ne the second covariant
derivative r�

X� Y 
 C�
� �TM	 � C�

� �TM	 by

r�
X� Y 
 Z �� �rX �Z	�Y 	�

It then follows from the de�nition above that

r�
X� YZ � rX� �Z�Y 		� �Z�rXY 	 � rXrYZ �rrXYZ�

De�nition ���� Let �M� g	 be a Riemannian manifold with Levi�
Civita connection r� Let R 
 C�

	 �TM	 � C�
� �TM	 be twice the

skew�symmetric part of the second covariant derivative r� i�e�

R�X� Y 	Z � r�
X� YZ �r�

Y�XZ � rXrYZ �rYrXZ �r�X� Y �Z�

��
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Then R is a smooth tensor �eld of type �� �	 which we call the cur
vature tensor of the Riemannian manifold �M� g	�

Proof� See Exercise ����

Note that the curvature tensor R only depends on the intrinsic
object r and hence it is intrinsic itself�

Proposition ���� Let �M� g	 be a smooth Riemannian manifold�
For vector �elds X� Y� Z�W on M we then have

i� R�X� Y 	Z � �R�Y�X	Z�
ii� g�R�X� Y 	Z�W 	 � �g�R�X� Y 	W�Z	�

iii� g�R�X� Y 	Z�W 	 � g�R�Z�X	Y�W 	 � g�R�Y� Z	X�W 	 � ��
iv� g�R�X� Y 	Z�W 	 � g�R�Z�W 	X� Y 	�
v� � �R�X� Y 	Z � R�X� Y � Z	�Y � Z	� R�X� Y � Z	�Y � Z	

� R�X � Z� Y 	�X � Z	� R�X � Z� Y 	�X � Z	�

Proof� See Exercise ���

For a point p �M let G��TpM	 denote the set of all ��dimensional
subspaces of TpM i�e�

G��TpM	 � fV � TpM j V is a ��dimensional subspace of TpMg�
Lemma ���� Let X� Y� Z�W � TpM such that the two ��dimensional

subspaces spanRfX� Y g� spanRfZ�Wg � G��TpM	 are equal� Then

g�R�X� Y 	Y�X	

jXj�jY j� � g�X� Y 	�
�

g�R�Z�W 	W�Z	

jZj�jW j� � g�Z�W 	�
�

Proof� See Exercise ����

De�nition ���� For a point p �M the function Kp 
 G��TpM	 �
R with

Kp 
 spanRfX� Y g �� g�R�X� Y 	Y�X	

jXj�jY j� � g�X� Y 	�

is called the sectional curvature at p� Furthermore we de�ne the
functions ��& 
 M � R by

� 
 p �� min
V 
G��TpM�

Kp�V 	 and & 
 p �� max
V 
G��TpM�

Kp�V 	�

The Riemannian manifold �M� g	 is said to be

i� of �strictly	 positive curvature if infp
M ��p	 � � �	 �	�
ii� of �strictly	 negative curvature if supp
M &�p	 � � �� �	�

iii� of constant curvature if � � & is constant�
iv� �at if � 	 & 	 ��
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Proposition ���� Let �M� g	 be a Riemannian manifold and let
�U� x	 be a local coordinate on M � For i� j� k� l � �� � � � � m put Xi �
���xi and Rijkl � g�R�Xi� Xj	Xk� Xl	� Then

Rijkl �
mX
s��

gsl
�
�%s

jk

�xi
� �%s

ik

�xj
�

mX
r��

f%r
jk � %s

ir � %r
ik � %s

jrg
�

Proof� Using the fact that �Xi� Xj� � � we obtain

R�Xi� Xj	Xk � rXi
rXj

Xk �rXj
rXi

Xk

� rXi
�
Pm

s�� %s
jk �Xs	�rXj

�
Pm

s�� %s
ik �Xs	

�
mX
s��

�
�%s

jk

�xi
�Xs �

mX
r��

%s
jk%

r
isXr � �%s

ik

�xj
�Xs �

mX
r��

%s
ik%

r
jsXr

�

�
mX
s��

�
�%s

jk

�xi
� �%s

ik

�xj
�

mX
r��

f%r
jk%

s
ir � %r

ik%
s
jrg
�
Xs�

Example ��	� Let �M� g	 be the Euclidean space� Then the set
f���x�� � � � � ���xmg is a global frame for TRm � We have gij � �ij� so
%k
ij 	 �� This implies that R 	 � so Em is #at�

Example ��
� The standard sphere Sm has constant sectional cur�
vature �� �see Exercises ��� and ���	 and the hyperbolic space Hm has
constant sectional curvature �� �see Exercise ���	�

Our next goal is Corollary ���� where we obtain a formula for the
curvature tensor of the manifolds of constant sectional curvature ��
This turns out to be very useful in the study of Jacobi �elds later on�

Lemma ���� Let �M� g	 be a Riemannian manifold and �p� Y 	 �
TM � Then the map �Y 
 TpM � TpM with �Y 
 X �� R�X� Y 	Y is a
symmetric endomorphism of the tangent space TpM �

Proof� For Z � TpM we have

g� �Y �X	� Z	 � g�R�X� Y 	Y� Z	 � g�R�Y� Z	X� Y 	

� g�R�Z� Y 	Y�X	 � g�X� �Y �Z		�

Lemma ��� implies the existence of eigenvectors X�� � � � � Xm for the
symmetric endomorphism �Y which form an orthonormal basis for the
tangent space TpM such that the corresponding eigenvalues satisfy

���p	 � � � � � �m�p	�
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De�nition ����� Let �M� g	 be a Riemannian manifold� Then de�
�ne the smooth tensor �eld R� 
 C�

	 �TM	 � C�
� �TM	 of type �� �	

by
R��X� Y 	Z � g�Y� Z	X � g�X�Z	Y�

Proposition ����� Let �M� g	 be a smooth Riemannian manifold
and X� Y� Z be vector �elds on M � Then

i� jR�X� Y 	Y � ���
�
R��X� Y 	Y j � �

�
�&� �	jXjjY j�

ii� jR�X� Y 	Z � ���
�
R��X� Y 	Zj � �

	
�&� �	jXjjY jjZj

Proof� Without loss of generality we can assume that jXj � jY j �
jZj � �� If X � X� � XT with X� � Y and XT is a multiple of Y
then R�X� Y 	Z � R�X�� Y 	Z and jX�j � jXj so we can also assume
that X � Y � Then R��X� Y 	Y � hY� Y iX � hX� Y iY � X�

The �rst statement follows from the fact that the symmetric endo�
morphism of TpM with

X �� fR�X� Y 	Y � & � �

�
�Xg

has eigenvalues in the interval � ���
�
� ���

�
��

It is easily checked that the operator R� satis�es the conditions of
Proposition �� and hence D � R� ���

�
�R� as well� This implies that

� �D�X� Y 	Z � D�X� Y � Z	�Y � Z	�D�X� Y � Z	�Y � Z	

� D�X � Z� Y 	�X � Z	�D�X � Z� Y 	�X � Z	�

The second statement then follows from

�jD�X� Y 	Zj � �

�
�&� �	fjXj�jY � Zj� � jY � Zj�	

�jY j�jX � Zj� � jX � Zj�	g
�

�

�
�&� �	f�jXj�jY j� � jZj�	 � �jY j�jXj� � jZj�	g

� ��&� �	�

Corollary ����� Let �M� g	 be a Riemannian manifold of constant
curvature �� Then the curvature tensor R is given by

R�X� Y 	Z � ��hY� ZiX � hX�ZiY 	�

Proof� This follows directly from Proposition ���� by using & �
� � ��

Proposition ����� Let �G� h� i	 be a Lie group equipped with a left�
invariant metric such that for all X � g the endomorphism ad�X	 





� THE CURVATURE TENSOR ��

g � g is skew�symmetric with respect to h� i� Then for any left�
invariant vector �elds X� Y� Z � g the curvature tensor R is given
by

R�X� Y 	Z � ��

�
��X� Y �� Z��

Proof� See Exercise ����

Theorem ���� �The Gauss Equation	� Let �M� g	 be a Riemann�
ian manifold and �M be a submanifold equipped with the induced metric
�g� Let X� Y� Z�W � C��TM	 be vector �elds extending �X� �Y � �Z� �W �
C��T �M	� Then

h �R� �X� �Y 	 �Z� �W i � hR�X� Y 	Z�W i� hB� �Y � �Z	� B� �X� �W 	i
�hB� �X� �Z	� B� �Y � �W 	i�

Proof� Using the de�nitions of the curvature tensors R� �R� the
Levi�Civita connection �r and the second fundamental form of �M in
M we obtain

h �R� �X� �Y 	 �Z� �W i
� h �r�X

�r�Y
�Z � �r�Y

�r�X
�Z � �r� �X� �Y �

�Z� �W i
� h�rX�rYZ �B�Y� Z			T � �rY�rXZ �B�X�Z			T �W i

�h�r�X� Y �Z � B��X� Y �� Z		T �W i
� hrXrYZ �rYrXZ �r�X� Y �Z�W i

�hrX�B�Y� Z		�rY�B�X�Z		�W i
� hR�X� Y 	Z�W i� hB�Y� Z	� B�X�W 	i � hB�X�Z	� B�Y�W 	i�

As a direct consequence we get the following�

Corollary ����� Let �M� g	 be a Riemannian manifold and �M be
a totally geodesic submanifold� Let X� Y� Z�W � C��TM	 be vector
�elds extending �X� �Y � �Z� �W � C��T �M	� Then

h �R� �X� �Y 	 �Z� �W i � hR�X� Y 	Z�W i�
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Exercises

Exercise ���� Let �M� g	 be a Riemannian manifold� Prove that
the tensor �eld g of type ��� �	 is parallel with respect to the Levi�Civita
connection�

Exercise ���� Let �M� g	 be a Riemannian manifold� Prove that
R is a smooth tensor �eld of type �� �	�

Exercise ���� Find a proof for Proposition ���

Exercise ���� Find a proof for Lemma ����

Exercise ���� Let g be the Euclidean metric on C
m given by

g�z� w	 �
mX
k��

Re�zk �wk	�

Let Tm be the m�dimensional torus fz � C
m j jz�j � ��� � jzmj � �g

with the induced metric �g�

i� Find an isometric immersion � 
 Rm � Tm�
ii� Determine all geodesics on �Tm� g	�
iii� Prove that �Tm� g	 is #at�

Exercise ���� Find a proof for Proposition ����

Exercise ��	� Let the Lie group S	 �� SU��	 be equipped with
the metric hX� Y i � �

�
Reftrace� �X t � Y 	g�

i� Find an orthonormal basis for TeSU��	�
ii� Show that �SU��	� g	 has constant sectional curvature ���

Exercise ��
� Let Sm be the unit sphere in Rm�� equipped with
the standard Euclidean metric h� iRm��� Use the results of Corollaries
����� ���� and Exercise ��� to prove that �Sm� h� iRm��	 has constant
sectional curvature ��

Exercise ���� Let Hm � �R� � Rm�� � �
x��
h� iRm	 be the m�dimen�

sional hyperbolic space� On Hm we de�ne the operation � by ��� x	 �
��� y	 � �� � �� � � y � x	� For k � �� � � � � m de�ne the vector �eld
Xk � C��THm	 by �Xk	x � x� � �

�xk
� Prove that�

i� �Hm� �	 is a Lie group�
ii� the vector �elds X�� � � � � Xm are left�invariant�

iii� the metric g is left�invariant�
iv� �Hm� g	 has constant curvature ���



CHAPTER �


Curvature and Local Geometry

This chapter is devoted to the study of the local geometry of a
Riemannian manifold and how that is controlled by its curvature ten�
sor� We are interested in understanding the spreading of geodesics that
all go through the same given point� Using Jacobi �elds we obtain a
fundamental comparison result describing the curvature dependence of
local distances�

De�nition ����� Let �M� g	 be a smooth Riemannian manifold�
By a smooth �parameter family of geodesics we mean a C��map

� 
 ���� �	� I �M

such that the curve �t� 
 I �M given by �t� 
 s �� ��t�� s	 is a geodesic
for all t� � ���� �	� We call t � ���� �	 the family parameter of ��

Proposition ����� Let �M� g	 be a Riemannian manifold and � 

���� �	� I �M be a ��parameter family of geodesics� Then the vector
�eld Jt� 
 I � C�

�t�
�TM	 along �t� given by

Jt��s	 �
��

�t
�t�� s	

satis�es the second order ordinary di�erential equation

r �t�
r �t�

Jt� � R�Jt� �  �t�	  �t� � ��

Proof� Along � we put X�t� s	 � ����s and J�t� s	 � ����t�
Then ����t� ���s� � � leads to

�J�X� � �d�����t	� d�����s	� � d������t� ���s�	 � ��

The de�nition of the curvature tensor now implies that

R�J�X	X � rJrXX �rXrJX �r�J�X�X

� �rXrJX
� �rXrXJ�

Hence for each t� � ���� �	 we have

r �t�
r �t�

Jt� � R�Jt� �  �t�	  �t� � ��

�
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De�nition ����� Let �M� g	 be a Riemannian manifold and � 

I �M be a geodesic� A vector �eld J along � is called a Jacobi �eld
if

rXrXJ � R�J�X	X � �

along � where X �  �� We denote the space of all Jacobi �elds along �
by J��TM	�

Lemma ����� Let �M� g	 be a Riemannian manifold and � 
 I �
M be a geodesic� Then the space of Jacobi �elds J��TM	 is a vector
space�

Proof� This follows directly from the fact that the Jacobi �eld
equation is linear in J �

Proposition ����� Let � 
 I �M be a geodesic� t� � I� p � ��t�	
and X �  � along �� If v� w � TpM are two tangent vectors at p then
there exists a unique Jacobi �eld J along �� such that Jp � v and
�rXJ	p � w�

Proof� Let fX�� � � � � Xmg be an orthonormal frame of parallel vec�
tor �elds along �� If J is a vector �eld along �� then J �

Pm
i�� aiXi

where ai � hJ�Xii are smooth functions on I� The vector �elds
X�� � � � � Xm are parallel so we have rXJ �

Pm

i��  aiXi and rXrXJ �Pm
i�� �aiXi� For the curvature tensor we have R�Xi� X	X �

Pm
k�� b

k
iXk�

where bki � hR�Xi� X	X�Xki are smooth functions on I depending
on the geometry of �M� g	� This means that R�J�X	X is given by
R�J�X	X �

Pm
i�k�� aib

k
iXk� We now see that J is a Jacobi �eld if and

only if
mX
i��

��ai �
mX
k��

akb
i
k	Xi � ��

This is equivalent to the second order system

�ai �
mX
k��

akb
i
k � � for all i � �� �� � � � � m�

of linear ODEs in a � �a�� � � � � am	� A global solution will always
exist and is uniquely determined by a�t�	 and  a�t�	� This implies that
J exists globally and is uniquely determined by the initial conditions
J��t�� and �rXJ	��t���

Corollary ����� Let � 
 I � Mm be a geodesic� Then the vector
space J��TM	 of all Jacobi �elds along � is �m�dimensional�
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Lemma ���	� Let �M� g	 be a Riemannian manifold� � 
 I � M
be a geodesic and J be a Jacobi �eld along �� Let � � R

� and � 
 �I � I
be given by � 
 t �� t��� then � � � 
 �I �M is a geodesic and J � � is
a Jacobi �eld along � � ��

Proof� See Exercise �����

This means that when proving results about Jacobi �elds along a
geodesic � we can always without loss of generality assume that j  �j � ��

Proposition ���
� Let �M� g	 be a Riemannian manifold� � 
 I �
M be a geodesic with j  �j � � and J be a Jacobi �eld along �� Let JT

be the tangential part of J given by JT � hJ�  �i  � and JN � J � JT be
the normal part� Then JT and JN are Jacobi �elds along � and there
exist a� b � R such that JT �s	 � �as � b	  ��s	 for all s � I�

Proof� We now have

r �r �J
T � R�JT �  �	  � � r �r ��hJ�  �i  �	 � R�hJ�  �i  ��  �	  �

� hr �r �J�  �i  �

� �hR�J�  �	  ��  �i  �

� ��

This shows that the tangential part JT of J is a Jacobi �eld� The
fact that J��TM	 is a vector space implies that the normal part JN �
J � JT of J also is a Jacobi �eld�

By di�erentiating hJ�  �i twice along � we obtain

d�

ds�
hJ�  �i � hr �r �J�  �i � �hR�J�  �	  ��  �i � �

so hJ�  �i�s	 � �as � b	 for some a� b � R�

Note that the last statement of Proposition �����	 implies that we
now know all the tangential Jacobi �elds along ��

At this point we remind the reader of the following classical fact


Remark ����� If � is a real number then the unique solution to
the initial value problem

�f � � � f � �� f��	 � a and  f��	 � b

is the function f 
 R � R� f�s	 � ac��s	 � bs��s	 where c� 
 R � R

and s� 
 R � R are given by

c��s	 �

�	

	�
cosh�

pj�js	 if � � ��

� if � � ��

cos�
p
�s	 if � 	 ��
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and

s��s	 �

�	

	�
sinh�

pj�js	�pj�j if � � ��

s if � � ��

sin�
p
�s	�

p
� if � 	 ��

Example ������ Let C be the complex plane with the standard
Euclidean metric h� iR� of constant sectional curvature � � �� The
rotations about the origin produce a ��parameter family of geodesics
�t 
 s �� seit� Along the geodesic �� 
 s �� s we get the Jacobi �eld
J��s	 � ��t��t��� s	 � is with jJ��s	j � jsj � js��s	j��

Example ������ Let S� be the unit sphere in the standard Eu�
clidean �space C � R with the induced metric of constant sectional
curvature � � ��� Rotations about the R�axis produce a ��parameter
family of geodesics �t 
 s �� �sin�s	eit� cos�s		� Along the geodesic
�� 
 s �� �sin�s	� cos�s		 we get the Jacobi �eld J��s	 � ��t��t��� s	 �
�isin�s	� �	 with jJ��s	j� � sin��s	 � js��s	j��

Example ������ Let B�
���	 be the open unit disk in the complex

plane with the hyperbolic metric �����jzj�	�h� iR� of constant sectional
curvature � � ��� Rotations about the origin produce a ��parameter
family of geodesics �t 
 s �� tanh�s	eit� Along the geodesic �� 
 s ��
tanh�s	 we get the Jacobi �eld J��s	 � i � tanh�s	 with

jJ��s	j� �
� � tanh��s	
�� tanh��s	

� sinh��s	 � js��s	j��

We will now see that when the manifold �M� g	 has constant sec�
tional curvature we can completely solve the Jacobi �eld equation

rXrXJ � R�J�X	X � �

along any given geodesic � 
 I �M � where X �  ��
Let �M� g	 be a Riemannian manifold of constant sectional curva�

ture � and � 
 I � M be a geodesic with jXj � � where X �  ��
Further let P�� P�� � � � � Pm�� be parallel vector �elds along � such that
g�Pi� Pj	 � �ij and g�Pi� X	 � �� Any vector �eld J along � may now
be written as

J�s	 �
m��X
i��

fi�s	Pi�s	 � fm�s	X�s	�

We now see that J is a Jacobi �eld if and only if



��� CURVATURE AND LOCAL GEOMETRY ��

m��X
i��

�fi�s	Pi�s	 � �fm�s	X�s	 � rXrXJ

� �R�J�X	X

� �R�JN � X	X

� ���g�X�X	JN � g�JN � X	X	

� ��JN

� ��
m��X
i��

fi�s	Pi�s	�

This implies that J is a Jacobi �eld if and only if the following
system of ODEs is satis�ed


�fi�s	 � �fi�s	 � � for all i � �� �� � � � � m� � and �fm�s	 � ����	

It is clear that for the initial values

i� J�s�	 �
Pm��

i�� viPi�s�	 � vmX�s�	�

ii� �rXJ	�s�	 �
Pm��

i�� wiPi�s�	 � wmX�s�	

or equivalently

fi�s�	 � vi and  fi�s�	 � wi for all i � �� �� ���� m

we can solve the system ��	 explicitly on the whole of I�

Corollary ������ Let �M� g	 be a Riemannian manifold� � 
 I �
M be a geodesic and J be a Jacobi �eld along �� If g�J�t�	�  ��t�		 � �
and g��r �J	�t�	�  ��t�		 � � for some t� � I� then g�J�t	�  ��t		 � � for

all t � I�

Proof� The conditions vm � wm � � imply that fm � ��

Example ������ Let S� be the unit sphere in the standard Eu�
clidean �space C � R with the induced metric of constant curvature
� � �� and � 
 R � S� be the geodesic given by � 
 s �� �eis� �	� Then
 ��s	 � �ieis� �	 so it follows from Proposition �����	 that all Jacobi
�elds tangential to � are given by

JT�a�b��s	 � �as � b	�ieis� �	 for some a� b � R �

The vector �eld P 
 R � TS� given by s �� ��eis� �	� ��� �	� satis�es
hP�  �i � � and jP j � �� The sphere S� is ��dimensional and  � is
parallel along � so P must be parallel� This implies that all the Jacobi
�elds orthogonal to  � are given by

JN�a�b��s	 � ��� a cos s � b sin s	 for some a� b � R �
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We will now see how Jacobi �elds can be constructed in the general
situation when the curvature not necessarily is constant
 Let �M� g	
be a complete Riemannian manifold� p � M and v� w � TpM � Then
s �� s�v�tw	 de�nes a ��parameter family of lines in the tangent space
TpM which all pass through the origin � � TpM � Remember that the
exponential map

�exp	pjBm
�p���


 Bm
�p��� � exp�Bm

�p���	

maps lines in TpM through the origin onto geodesics on M � Hence the
map

�t 
 s �� �exp	p�s�v � tw		

is a ��parameter family of geodesics through p �M � as long as s�v�tw	
is an element of Bm

�p���
� This means that J 
 s �� ���t��t	��� s	 is a

Jacobi �eld along the geodesic � 
 s �� ���s	 with ���	 � p and
 ���	 � w� It is easily veri�ed that J satis�es the initial conditions
J��	 � � and �rXJ	��	 � w�

Lemma ������ Let �M� g	 be a Riemannian manifold with sec�
tional curvature K uniformly bounded above by & and � 
 ��� �� �M be
a geodesic on M with jXj � � and X �  �� Further let J 
 ��� �� � TM
be a Jacobi �eld along � such that g�J�X	 � � and jJ j 
� � on ��� �	�
Then

i� d�

ds�
�jJ j	 � & � jJ j � ��

ii� if f 
 ��� �� � R is a C��function� such that

a� �f � & � f � � and f 	 � on ��� �	�
b� f��	 � jJ��	j� and
c�  f��	 � jrXJ��	j�

then f�s	 � jJ�s	j on ��� �	�
iii� if J��	 � �� then jrXJ��	j � s��s	 � jJ�s	j for all s � ��� �	�

Proof� i� Using the facts that jXj � � and hX� Ji � � we obtain

d�

ds�
�jJ j	 �

d�

ds�

p
hJ� Ji �

d

ds
�
hrXJ� Ji
jJ j 	

�
hrXrXJ� Ji

jJ j �
jrXJ j�jJ j� � hrXJ� Ji�

jJ j	

� hrXrXJ� Ji
jJ j

� �hR�J�X	X� Ji
jJ j

� �& � jJ j�
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ii� De�ne the function h 
 ��� �	 � R by h 
 s �� jJ�s�j
f�s�

for s � ��� �	

and h��	 � lims��
jJ�s�j
f�s�

� �� Then

 h�s	 �
�

f ��s	
�
d

ds
�jJ�s	j	f�s	� jJ�s	j  f�s		

�
�

f ��s	

Z s

�

�
d�

dt�
�jJ�t	j	f�t	� jJ�t	j �f�t		dt

�
�

f ��s	

Z s

�

f�t	�
d�

dt�
�jJ�t	j	 � & � jJ�t	j	dt

� ��

This implies that  h�s	 � � so f�s	 � jJ�s	j for all s � ��� �	�

iii� The function f�s	 � j�rXJ	��	j�s��s	 satis�es �f�s	�&f�s	 � ��

f��	 � jJ��	j � � and  f��	 � j�rXJ	��	j so it follows from �ii	 that

j�rXJ	��	j � s��s	 � f�s	 � jJ�s	j�

Let �M� g	 be a Riemannian manifold of sectional curvature which is
uniformly bounded above� i�e� there exists a & � R such that Kp�V 	 �
& for all V � G��TpM	 and p � M � Let �M�� g�	 be another Rie�
mannian manifold which is complete and of constant sectional curva�
ture K 	 &� Let p � M � p� �M� and identify TpM �� Rm �� Tp�M��

Let U be an open neighbourhood of Rm around � such that the
exponential maps �exp	p and �exp	p� are di�eomorphisms from U onto
their images �exp	p�U	 and �exp	p��U	� respectively� Let �r� p� q	 be
a geodesic triangle i�e� a triangle with sides which are shortest paths
between their end points� Furthermore let c 
 �a� b� � M be the side
connecting r and q and v 
 �a� b� � TpM be the curve de�ned by
c�t	 � �exp	p�v�t		� Put c��t	 � �exp	p��v�t		 for t � �a� b� and then
it directly follows that c�a	 � r and c�b	 � q� Finally put r� � c��a	
and q� � c��b	�

Theorem ������ For the above situation the following inequality
for the distance function is satis�ed
 d�q�� r�	 � d�q� r	�

Proof� De�ne a ��parameter family s �� s � v�t	 of straight lines
in TpM through p� Then �t 
 s �� �exp	p�s � v�t		 and ��

t 
 s ��
�exp	p��s � v�t		 are ��parameter families of geodesics through p � M �
and p� � M�� respectively� Hence Jt � ��t��t and J�

t � ���
t ��t are

Jacobi �elds satisfying the initial conditions Jt��	 � J�
t ��	 � � and



�� ��� CURVATURE AND LOCAL GEOMETRY

�rXJ t	��	 � �rXJ�
t 	��	 �  v�t	� Using Lemma ������	 we now obtain

j  c��t	j � jJ�
t ��	j � j�rXJ�

t 	��	j � s���	

� j�rXJt	��	j � s���	 � jJt��	j � j  c�t	j
The curve c is the shortest path between r and q so we have

d�r�� q�	 � L�c�	 � L�c	 � d�r� q	�

We now add the assumption that the sectional curvature of the
manifold �M� g	 is uniformly bounded below i�e� there exists a � � R

such that � � Kp�V 	 for all V � G��TpM	 and p � M � Let �M�� g�	
be a complete Riemannian manifold of constant sectional curvature ��
Let p � M and p� � M� and identify TpM �� R

m �� Tp�M�� Then a
similar construction as above gives two pairs of points q� r � M and
q�� r� �M� and shows that

d�q� r	 � d�q�� r�	�

Combining these two results we obtain locally

d�q�� r�	 � d�q� r	 � d�q�� r�	�
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Exercises

Exercise ����� Find a proof for Lemma �����	�

Exercise ����� Let �M� g	 be a Riemannian manifold and � 
 I �
M be a geodesic such that X �  � 
� �� Further let J be a non�vanishing
Jacobi �eld along � with g�X� J	 � �� Prove that if g�J� J	 is constant
along � then �M� g	 does not have strictly negative curvature�


